精英家教网 > 高中数学 > 题目详情
如图,某市拟在长为8km的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数y=Asinωx(A>0,ω>0)x∈[0,4]的图象,且图象的最高点为;赛道的后一部分为折线段MNP,为保证参赛运动员的安全,限定∠MNP=120°
(1)求A,ω的值和M,P两点间的距离;
(2)应如何设计,才能使折线段赛道MNP最长?
【答案】分析:(1)由图得到A及周期,利用三角函数的周期公式求出ω,将M的横坐标代入求出M的坐标,利用两点距离公式求出|MP|
(2)利用三角形的正弦定理求出NP,MN,求出折线段赛道MNP的长,化简三角函数,利用三角函数的有界性求出最大值.
解答:解:(1)因为图象的最高点为
所以A=
由图知y=Asin?x的周期为T=12,又T=,所以ω=,所以y=
所以M(4,3),P(8,0)
|MP|=
(2)在△MNP中,∠MNP=120°,故θ∈(0°,60°)
由正弦定理得
所以NP=,MN=
设使折线段赛道MNP为L则
L=
=
=
所以L的最大值是
点评:本题考查有图象得三角函数的性质,由性质求函数的解析式、考查两点距离公式、考查三角形的正弦定理、考查三角函数的有界性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,某市拟在长为16km的道路OP的一侧修建一条自行车赛道,赛道的前一部分为曲线OSM,该曲线段为函数y=Asinωx(A>0,ω>0,x∈[0,8]的图象,且图象的最高点为S(6,4
3
).赛道的后一段为折线段MNP,为保证参赛队员的安全,限定∠MNP=120°.
(1)求实数A和ω的值以及M、P两点之间的距离;
(2)连接MP,设∠NPM=θ,y=MN+NP,试求出用θ表示y的解析式;
(3)(理科)应如何设计,才能使折线段MNP最长?
(文科)求函数y的最大值.

查看答案和解析>>

科目:高中数学 来源:2009年高考数学理科(福建卷) 题型:044

如图,某市拟在长为8 km的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段位函数yAsinωx(0,ω>0)x[04]的图像,且图像的最高点位S(32);赛道的后一部分为折线段MNP,为保证参赛运动员的安全,限定∠MNP120°

()A,ω的值和MP两点间的距离;

()应如何设计,才能使折线段赛道MNP最长?

查看答案和解析>>

科目:高中数学 来源:黑龙江哈九中2012届高三第四次模拟数学理科试题 题型:044

如图,某市拟在长为8 km的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数y=Asinωx(A>0,ω>0),x∈[0,4]的图象,且图象的最高点为;赛道的后一部分为折线段MNP.为保证参赛运动员的安全,限定∠MNP=120°.

(1)求A,ω的值和M,P两点间的距离;

(2)应如何设计,才能使折线段线段MNP最长?

查看答案和解析>>

科目:高中数学 来源:黑龙江哈九中2012届高三第四次模拟数学文科试题 题型:044

如图,某市拟在长为8 km的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数的图象,且图象的最高点为;赛道的后一部分为折线段MNP.为保证参赛运动员的安全,限定∠MNP=120°.

(1)求A,ω的值和M,P两点间的距离;

(2)应如何设计,才能使折线段线段MNP最长?

查看答案和解析>>

科目:高中数学 来源:2011年上海市黄浦区高考数学一模试卷(文理合卷)(解析版) 题型:解答题

如图,某市拟在长为16km的道路OP的一侧修建一条自行车赛道,赛道的前一部分为曲线OSM,该曲线段为函数y=Asinωx(A>0,ω>0,x∈[0,8]的图象,且图象的最高点为S(6,4).赛道的后一段为折线段MNP,为保证参赛队员的安全,限定∠MNP=120°.
(1)求实数A和ω的值以及M、P两点之间的距离;
(2)连接MP,设∠NPM=θ,y=MN+NP,试求出用θ表示y的解析式;
(3)(理科)应如何设计,才能使折线段MNP最长?
(文科)求函数y的最大值.

查看答案和解析>>

同步练习册答案