精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P-ABCD中,底面ABCD为菱形,底面ABCDEF分别是PCAB的中点.

1)证明:平面PAD

2)若,求PD与平面PBC所成角的正弦值.

【答案】(1)证明见详解;(2)

【解析】

1)在平面PAD中寻找EF的平行线,由线线平行,推证线面平行即可;

2)根据题意,建立空间直角坐标系,通过向量法求解.

1)取PD中点为M,根据题意作图如下:

因为EM均为三角形PCD中两边中点,

,且

AF//EM,且AF=EM

则四边形AMEF为平行四边形.

EF不在面PADPAD

PAD

2)由题设知底面ABCD

PA

,又,故平面PAB

因为//AD

平面PAB

PAB

ADAB

综上所述:ADAB

且菱形ABCD为正方形,由AC=4

解得正方形ABCD的边长为.

A为坐标原点,过点A,作BD的平行线为轴,

建立如图空间直角坐标系

,则

设平面PBC的法向量为,则

,即

,又

PD与平面PBC所成角为,则

故直线PD与平面PBC所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,用种不同的颜色给图中的个格子涂色,每个格子涂一种颜色,要求最多使用种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.为真命题,则均为假命题;

B.命题,则的逆否命题为真命题;

C.等比数列的前项和为,若的否命题为真命题;

D.平面向量的夹角为钝角的充要条件是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着手机的发展,“微信”逐渐成为人们交流的一种形式,某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如表:

年龄(单位:岁)

频数

5

10

15

10

5

5

赞成人数

5

10

12

7

2

1

(1)若以“年龄55岁为分界点”,由以上统计数据完成下面列联表,并判断是否有99.9%的把握认为“使用微信交流”的态度与人的年龄有关;

年龄不低于55岁的人数于

年龄低于55岁的人数

合计

赞成

不赞成

合计

(2)若从年龄在的被调查人中随机选取2人进行追踪调查,求2人中至少有1人赞成“使用微信交流”的概率.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求的值;

(2)已知某班共有人,记这人生日至少有两人相同的概率为,将一年看作365天.

(i)求的表达式;

(ii)估计的近似值(精确到0.01).

参考数值:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1ab0),椭圆C上的点到焦点距离的最大值为9,最小值为1

1)求椭圆C的标准方程;

2)求椭圆C上的点到直线l4x5y+400的最小距离?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cx2=4y的焦点为F,过点P-22)的直线l与抛物线C交于AB两点.

1)当点PAB的中点时,求直线AB的方程;

2)求|AF||BF|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆的圆心为,直线过点且与轴不重合,交圆两点,过点的平行线交于点.

(1)求的值;

(2)设点的轨迹为曲线,直线与曲线相交于两点,与直线相交于点,试问在椭圆上是否存在一定点,使得成等差数列(其中分别指直线的斜率).若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(卷号)2040818101747712

(题号)2050752239689728

(题文)

在平面直角坐标系中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知直线的参数方程为为参数),曲线C的极坐标方程为.

(1)求曲线的直角坐标方程和直线的普通方程;

(2)设直线与曲线交于两点,点,求的值.

查看答案和解析>>

同步练习册答案