精英家教网 > 高中数学 > 题目详情

【题目】已知点是抛物线上一点,且的焦点的距离为

(1)若直线交于两点,为坐标原点,证明:

(2)若上一动点,点不在直线上,过作直线垂直于轴且交于点,过的垂线,垂足为.试判断中是否有一个为定值?若是,请指出哪一个为定值,并加以证明;若不是,请说明理由.

【答案】(1)证明见解析;(2).

【解析】分析:(1)依题意得,列出方程组,求得,即可得到的方程,把直线方程与曲线的方程联立,求得,结合向量的运算,即可证得

(2)由(1)知,,故的方程为,设,则的横坐标为,求出,由题意知,与联立可得,求出,则不是定值,为定值.

详解:(1)依题意得

,∴,故的方程为

,则

,∴

(2)由(1)知,,故的方程为

),则的横坐标为,易知上,则

由题可知,与联立可得

所以

不是定值,为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧面与侧面都是菱形, .

(1)证明:

(2)若三棱柱的体积为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中志愿者部有男志愿者6人,女志愿者4人,这些人要参加元旦联欢会的服务工作. 从这些人中随机抽取4人负责舞台服务工作,另外6人负责会场服务工作.

(Ⅰ)设为事件:“负责会场服务工作的志愿者中包含女志愿者但不包含男志愿者”,求事件发生的概率.

(Ⅱ)设表示参加舞台服务工作的女志愿者人数,求随机变量的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】朱世杰是历史上最伟大的数学家之一,他所著的四元玉鉴卷中如像招数五问有如下问题:今有官司差夫一千八百六十四人筑堤只云初日差六十四人,次日转多七人,每人日支米三升,共支米四百三石九斗二升,问筑堤几日其大意为:官府陆续派遣人前往修筑堤坝,第一天派出人,从第二天开始,每天派出的人数比前一天多人,修筑堤坝的每人每天分发大米升,共发出大米升,问修筑堤坝多少天这个问题中,前天一共应发大米____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的单调递增区间;

(2)若函数有两个极值点恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】表示中的最大值.已知函数

(1)设求函数上零点的个数

(2)试探讨是否存在实数使得恒成立若存在的取值范围若不存在说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,ABCD是一块边长为7米的正方形铁皮,其中ATN是一半径为6米的扇形,已经被腐蚀不能使用,其余部分完好可利用.工人师傅想在未被腐蚀部分截下一个有边落在BC与CD上的长方形铁皮,其中P是弧TN上一点.设,长方形的面积为S平方米.

(1)求关于的函数解析式;

(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,已知曲线的参数方程为为参数)。曲线的参数方程为为参数),在以坐标原点为极点,轴正半轴为极轴建立极坐标系.

(1)求曲线的极坐标方程;

(2)在极坐标系中,射线与曲线交于点,射线与曲线交于点,求的面积(其中为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知都是定义域为的连续函数.已知:满足:①当时,恒成立;②都有满足:①都有②当时,.若关于的不等式恒成立,则的取值范围是

A. B.

C. D.

查看答案和解析>>

同步练习册答案