精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)满足f(x-1)=x2,则f(x)的解析式为(  )
A.f(x)=(x+1)2B.f(x)=(x-1)2C.f(x)=x2+1D.f(x)=x2-1

分析 通过换元法求出函数f(x)的解析式即可.

解答 解:令x-1=t,则x=t+1,
则f(x-1)=f(t)=(t+1)2
∴f(x)=(x+1)2
故选:A.

点评 本题考查了求函数的解析式问题,考查换元思想,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.抛物线y2=4x与直线y=-2x+4所围成的面积为$\frac{86}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.直线kx-y-1=0与圆x2+y2-2y=0有公共点,则实数k的取值范围是(  )
A.[-$\sqrt{3}$,$\sqrt{3}$]B.(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞)C.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]D.(-∞,-$\frac{3}{3}$]∪[$\frac{\sqrt{3}}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知n!=1×2×3…×n(如1!,2!=1×2=2,3!=1×2×3=6,n∈N*),函数f(x)=ex(e为自然对数的底数),gn(x)=1+x+$\frac{{x}^{2}}{2!}$+$\frac{{x}^{3}}{3!}$+…+$\frac{{x}_{n}}{n!}$
(I)证明:f(x)≥g1(x)
(II) 证明:1+($\frac{2}{2}$)1+($\frac{2}{3}$)2+($\frac{2}{4}$)3+…+($\frac{2}{n+1}$)n≤gn(1)<e(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.方程2x=$\sqrt{2}$的解=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.有5件产品,其中3件正品,2件次品,从中任取2件,则互斥而不对立的两个事件是(  )
A.至少有1件次品与至多有1件正品B.恰有1件次品与恰有2件正品
C.至少有1件次品与至少有1件正品D.至少有1件次品与都是正品

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图是y=f(x)的导函数y=f′(x)的图象,下列判断正确的是(  )
A.在区间(-2,1)内f(x) 是增函数B.在区间(1,3)内f(x) 是减函数
C.在区间(4,5)内f(x) 是增函数D.在x=2时,f(x)取到极小值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若A,B,C不共线,对于空间任意一点O都有$\overrightarrow{OP}$=$\frac{1}{4}$$\overrightarrow{OA}$+$\frac{1}{8}$$\overrightarrow{OB}$+$\frac{1}{8}$$\overrightarrow{OC}$,则P,A,B,C四点(  )
A.不共面B.共面C.共线D.不共线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图是150辆汽车通过某路段时速度的频率分布直方图,则速度在[50,70)的汽车大约有(  )
A.120辆B.90辆C.80辆D.60辆

查看答案和解析>>

同步练习册答案