6£®ÒÑÖªµÈ²îÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÊýÁÐ{bn}ÊǵȱÈÊýÁУ¬ÇÒÂú×ãa1=3£¬b1=1£¬b2+S2=10£¬a5-2b2=a3£®
£¨1£©ÇóÊýÁÐ{an}ºÍ{bn}µÄͨÏʽ£»
£¨2£©Áîcn=$\left\{\begin{array}{l}{\frac{2}{{S}_{n}}£¬nΪÆæÊý}\\{{a}_{n}{b}_{n}£¬nΪżÊý}\end{array}\right.$£¬ÉèÊýÁÐ{cn}µÄÇ°nÏîºÍΪTn£¬ÇóT2n£®

·ÖÎö £¨1£©ÉèµÈ²îÊýÁÐ{an}µÄ¹«²îΪd£¬{bn}ÊǵȱÈÊýÁУ¬É蹫±ÈΪq£¬ÔËÓõȲîÊýÁк͵ȱÈÊýÁеÄͨÏʽ£¬½â·½³Ì¿ÉµÃÊ×ÏîºÍ¹«²î£¬½ø¶øµÃµ½ËùÇóµÄͨÏʽ£»
£¨2£©ÇóµÃcn£¬ÔÙÓÉÊýÁеÄÇóºÍ·½·¨£ºÁÑÏîÏàÏûÇóºÍºÍ´íλÏà¼õ·¨£¬¼´¿ÉµÃµ½ËùÇóºÍ£®

½â´ð ½â£º£¨1£©ÉèµÈ²îÊýÁÐ{an}µÄ¹«²îΪd£¬{bn}ÊǵȱÈÊýÁУ¬É蹫±ÈΪq£¬
ÓÉÌâÒâ¿ÉµÃq+6+d=10£¬3+4d-2q=3+2d£¬
½âµÃd=q=2£¬
ÔòÊýÁÐ{an}µÄͨÏîΪan=a1+£¨n-1£©d=3+2£¨n-1£©=2n+1£»
ºÍ{bn}µÄͨÏîΪbn=b1qn-1=2n-1£»
£¨2£©cn=$\left\{\begin{array}{l}{\frac{2}{{S}_{n}}£¬nΪÆæÊý}\\{{a}_{n}{b}_{n}£¬nΪżÊý}\end{array}\right.$=$\left\{\begin{array}{l}{\frac{2}{n£¨n+2£©}£¬nΪÆæÊý}\\{£¨2n+1£©•{2}^{n-1}£¬nΪżÊý}\end{array}\right.$£¬
ÔòT2n=[$\frac{2}{1¡Á3}$+$\frac{2}{3¡Á5}$+¡­+$\frac{2}{£¨2n-1£©£¨2n+1£©}$]+[5•2+9•23+¡­+£¨4n+1£©•22n-1]£¬
ÓÉS=$\frac{2}{1¡Á3}$+$\frac{2}{3¡Á5}$+¡­+$\frac{2}{£¨2n-1£©£¨2n+1£©}$=1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+¡­+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$
=1-$\frac{1}{2n+1}$=$\frac{2n}{2n+1}$£»
ÓÉT=5•2+9•23+¡­+£¨4n+1£©•22n-1£¬
4T=5•8+9•25+¡­+£¨4n+1£©•22n+1£¬
Á½Ê½Ïà¼õ¿ÉµÃ-3T=10+4£¨8+32+¡­+22n-1£©-£¨4n+1£©•22n+1
=10+4•$\frac{8£¨1-{4}^{n-1}£©}{1-4}$-£¨4n+1£©•22n+1£¬
»¯¼ò¿ÉµÃ£¬T=$\frac{2-£¨1-12n£©•{2}^{2n+1}}{9}$£®
ÔòÓÐT2n=$\frac{2n}{2n+1}$+$\frac{2-£¨1-12n£©•{2}^{2n+1}}{9}$£®

µãÆÀ ±¾Ì⿼²éµÈ²îÊýÁк͵ȱÈÊýÁеÄͨÏʽºÍÇóºÍ¹«Ê½µÄÔËÓ㬿¼²éÊýÁеÄÇóºÍ·½·¨£ºÁÑÏîÏàÏûÇóºÍ´íλÏà¼õ·¨£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Èç¹ûÒÑÖªsin¦Á•cos¦Á£¼0£¬sin¦Á•tan¦Á£¼0£¬ÄÇô½Ç$\frac{¦Á}{2}$µÄÖÕ±ßÔÚ£¨¡¡¡¡£©
A£®µÚÒ»»òµÚ¶þÏóÏÞB£®µÚÒ»»òµÚÈýÏóÏÞC£®µÚ¶þ»òµÚËÄÏóÏÞD£®µÚËÄ»òµÚÈýÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®º¯Êýy=x${\;}^{-\frac{4}{3}}$-1µÄÁãµãΪ¡À1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄ¸÷Ïî¾ùΪÕýÊý£¬S2=7£¬S6=91£¬ÔòS4=28£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªÅ×ÎïÏߦ££ºx2=8yµÄ½¹µãΪF£¬Ö±ÏßlÓëÅ×ÎïÏߦ£ÔÚµÚÒ»ÏóÏÞÏàÇÐÓÚµãP£¬²¢ÇÒÓëÖ±Ïßy=-2¼°xÖá·Ö±ð½»ÓÚA¡¢BÁ½µã£¬Ö±ÏßPFÓëÅ×ÎïÏߦ£µÄÁíÒ»½»µãΪQ£¬¹ýµãB×÷BC¡ÎAF½»PFÓÚµãC£¬Èô|PC|=|QF|£¬Ôò|PF|=£¨¡¡¡¡£©
A£®$\sqrt{5}$-1B£®2$+\sqrt{5}$C£®3$+\sqrt{5}$D£®5$+\sqrt{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖª¡÷ABCµÄÃæ»ýΪ3£¬ÇÒÂú×ã2$\sqrt{3}$¡Ü$\overrightarrow{AB}$•$\overrightarrow{AC}$¡Ü6£¬Éè$\overrightarrow{AB}$¡¢$\overrightarrow{AC}$µÄ¼Ð½ÇΪ¦È£®
£¨1£©Çó¦ÈµÄÈ¡Öµ·¶Î§£»
£¨2£©Çóº¯Êýf£¨¦È£©=2sin2£¨$\frac{¦Ð}{4}$+¦È£©-cos2¦ÈµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®º¯Êýf£¨x£©=2sinxµÄͼÏ󣨡¡¡¡£©
A£®¹ØÓڵ㣨$\frac{¦Ð}{4}$£¬0£©ÖÐÐĶԳÆB£®¹ØÓڵ㣨$\frac{¦Ð}{2}$£¬0£©ÖÐÐĶԳÆ
C£®¹ØÓڵ㣨$\frac{3¦Ð}{4}$£¬0£©ÖÐÐĶԳÆD£®¹ØÓڵ㣨¦Ð£¬0£©ÖÐÐĶԳÆ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®É輯ºÏM={x|0¡Üx¡Ü2}£¬N={y|0¡Üy¡Ü2}£¬´ÓMµ½NÓÐËÄÖÖ¶ÔÓ¦ÈçͼËùʾ£¬ÆäÖÐÄܱíʾΪMµ½NµÄº¯Êý¹ØϵµÄÊÇ£¨¡¡¡¡£©
A£®¢Ù¢ÚB£®¢Ú¢ÛC£®¢Û¢ÜD£®¢Ù¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®¡÷ABCµÄÍâ½ÓÔ²Ô²ÐÄΪO£¬°ë¾¶Îª2£¬$\overrightarrow{OA}+\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow 0$£¬Ôò$\overrightarrow{CB}$ÔÚ$\overrightarrow{CA}$·½ÏòÉϵÄͶӰΪ3£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸