精英家教网 > 高中数学 > 题目详情
椭圆的右准线方程是     
x=4

试题分析:本题知识点简单,就是利用椭圆的准线方程为,得到右准线方程为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知曲线E:ax2+by2=1(a>0,b>0),经过点M的直线l与曲线E交于点A、B,且=-2.
(1)若点B的坐标为(0,2),求曲线E的方程;
(2)若a=b=1,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆=1的焦点为F1、F2,点P为椭圆上的动点,当∠F1PF2为钝角时,求点P的横坐标x0的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆和双曲线有相同的焦点,点为椭圆和双曲线的一个交点,则的值为(     )
A.16B.25C.9D.不为定值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,已知点A为椭圆=1的右顶点,点D(1,0),点P、B在椭圆上,.
 
(1) 求直线BD的方程;
(2) 求直线BD被过P、A、B三点的圆C截得的弦长;
(3) 是否存在分别以PB、PA为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知,图中的一系列圆是圆心分别为AB的两组同心圆,每组同心圆的半径分别是1,2,3,…,n,…. 利用这两组同心圆可以画出以AB为焦点的椭圆或双曲线. 若其中经过点MN的椭圆的离心率分别是,经过点P,Q 的双曲线的离心率分别是,则它们的大小关系是      (用“”连接)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是方程表示椭圆或双曲线的 (  )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.不充分不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,F1,F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,内外两个椭圆的离心率相同,从外层椭圆顶点向内层椭圆引切线AC,BD,设内层椭圆方程为 ,若直线AC与BD的斜率之积为,则椭圆的离心率为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案