精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1-x2
在区间D上的反函数是它本身,则D可以是(  )
A、〔-l,l〕
B、〔0,1〕
C、(0,
2
2
D、〔
2
2
,1〕
分析:由题设条件,可以先求出函数的定义域,再观察四个选项,那一个的范围包含在所求的集合内,则其必为D.
解答:解:由题意0≤1-x2,故得-1≤x≤1,且函数的值域为[0,1]
又函数f(x)=
1-x2
在区间D上的反函数是其本身,
故函数必为一单调函数且自变量与函数值取值范围相同
由此知M=(0,1)
故选B.
点评:本题考点是反函数,考查具有反函数的函数本身所具有的特征,即其为一一对应的函数,本题中所给的函数为一偶函数,故可先求出其定义域再由题设要求反函数与原函数为同一函数得出符合条件的区间.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案