精英家教网 > 高中数学 > 题目详情

【题目】△ABC的外接圆半径R= ,角A,B,C的对边分别是a,b,c,且 =
(1)求角B和边长b;
(2)求SABC的最大值及取得最大值时的a,c的值,并判断此时三角形的形状.

【答案】
(1)解:∵

∴2sinAcosB﹣sinCcosB=sinBcosC,可得2sinAcosB=sinBcosC+cosBsinC=sin(B+C),

∵在△ABC中,sin(B+C)=sin(π﹣A)=sinA>0,

∴2sinAcosB=sinA,可得cosB=

又∵B∈(0,π),∴

由正弦定理 ,可得b=2RsinB=2 sin =3


(2)解:∵b=3,

∴由余弦定理b2=a2+c2﹣2accosB,得a2+c2﹣ac=9,

因此,ac+9=a2+c2≥2ac,可得ac≤9,当且仅当a=c时等号成立,

∵SABC= = ,∴

由此可得:当且仅当a=c时,SABC有最大值 ,此时a=b=c=3,可得△ABC是等边三角形


【解析】(1)运用两角和的正弦公式将已知等式化简整理,得到2sinAcosB=sin(B+C),根据三角函数的诱导公式可得sin(B+C)=sinA>0,从而得出cosB= ,可得 ,最后由正弦定理加以计算,可得边b的长;(2)由b=3且 ,利用余弦定理算出a2+c2﹣ac=9,再根据基本不等式算出ac≤9.利用三角形的面积公式算出SABC= ,从而得到当且仅当a=c时,SABC有最大值 ,进而得到此时△ABC是等边三角形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】图中程序是计算2+3+4+5+6的值的程序.在WHILE后的①处和在s=s+i之后的②处所就填写的语句可以是(  )

A.①i>1②i=i﹣1
B.①i>1②i=i+1
C.①i>=1②i=i+1
D.①i>=1②i=i﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C对的边分别为a,b,c,且c=2,C=60°.
(1)求 的值;
(2)若a+b=ab,求△ABC的面积SABC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C所对的边分别为a,b,c,已知a=2,b=3,cosC=
(1)求△ABC的面积;
(2)求sin(C﹣A)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,直线的方程为.

(1)若直线是曲线的切线,求证: 对任意成立;

(2)若对任意恒成立,求实数是应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体ABCD﹣A1B1C1D1中,B1 C和C1D与底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成角的余弦值为(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为的正方形,侧棱底面,且侧棱的长是,点分别是的中点.

(Ⅰ)证明: 平面

(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若的极值点,求实数的值;

(2)若上为增函数,求实数的取值范围;

(2)若使方程有实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点, 轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线的极坐标方程为,曲线的极坐标方程为.

(1)设为参数,若,求直线的参数方程;

(2)已知直线与曲线交于,设,且,求实数的值.

查看答案和解析>>

同步练习册答案