精英家教网 > 高中数学 > 题目详情

(本小题共13分)

在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q为0.25,在B处的命中率为q,该同学选择先在A处投一球,以后都在B处投,用表示该同学投篮训练结束后所得的总分,其分布列为

0

2

3

4

5

p

0.03

P1

P2

P3

P4

(1)求q的值;

(2)求随机变量的数学期望E;

(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.

(本小题共13分)

解:(1)设该同学在A处投中为事件A,在B处投中为事件B,则事件A,B相互独立,且P(A)=0.25,, P(B)= q,.

根据分布列知: =0时=0.03,所以,q=0.8.

(2)当=2时, P1=

=0.75 q( )×2=1.5 q( )=0.24

=3时, P2  ==0.01,

=4时, P3==0.48,

=5时, P4=

=0.24

所以随机变量的分布列为

0

2

3

4

5

p

0.03

0.24

0.01

0.48

0.24

随机变量的数学期望

(3)该同学选择都在B处投篮得分超过3分的概率为

;

该同学选择(1)中方式投篮得分超过3分的概率为0.48+0.24=0.72.

由此看来该同学选择都在B处投篮得分超过3分的概率大.

【命题立意】:本题主要考查了互斥事件的概率,相互独立事件的概率和数学期望,以及运用概率知识解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题共13分)

已知函数

   (I)若x=1为的极值点,求a的值;

   (II)若的图象在点(1,)处的切线方程为

(i)求在区间[-2,4]上的最大值;

(ii)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源:2011届北京市丰台区高三年级第二学期统一练习理科数学 题型:解答题


(本小题共13分)
已知函数
(Ⅰ)若处取得极值,求a的值;
(Ⅱ)求函数上的最大值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年北京市高三压轴文科数学试卷(解析版) 题型:解答题

(本小题共13分)

已知向量,设函数.

(Ⅰ)求函数上的单调递增区间;

(Ⅱ)在中,分别是角的对边,为锐角,若的面积为,求边的长.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京市丰台区高三下学期统一练习数学理卷 题型:解答题

(本小题共13分)

某商场在店庆日进行抽奖促销活动,当日在该店消费的顾客可参加抽奖.抽奖箱中有大小完全相同的4个小球,分别标有字“生”“意”“兴”“隆”.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1个球,重复以上操作,最多取4次,并规定若取出“隆”字球,则停止取球.获奖规则如下:依次取到标有“生”“意”“兴”“隆”字的球为一等奖;不分顺序取到标有“生”“意”“兴”“隆”字的球,为二等奖;取到的4个球中有标有“生”“意”“兴”三个字的球为三等奖.

(Ⅰ)求分别获得一、二、三等奖的概率;

(Ⅱ)设摸球次数为,求的分布列和数学期望.

 

查看答案和解析>>

科目:高中数学 来源:北京市宣武区2010年高三第一次质量检测数学(文)试题 题型:解答题

(本小题共13分)
已知函数
(I)当a=1时,求函数的最小正周期及图象的对称轴方程式;
(II)当a=2时,在的条件下,求的值.

查看答案和解析>>

同步练习册答案