精英家教网 > 高中数学 > 题目详情
椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
2
2
,过右焦点F的直线l与椭圆C相交于A、B两点,当直线l的斜率为1时,坐标原点O到直线l的距离为
2
2

(1)求椭圆C的方程;
(2)如图,椭圆C上是否存在点P,使得当直线l绕点F转到某一位置时,有
OP
=
OA
+
OB
成立?若存在,求出所有满足条件的点P的坐标及对应的直线方程;若不存在,请说明理由.
分析:(1)由O到直线l的距离为
2
2
,l:y=x-c,知
|c|
2
=
2
2
,c=1.由e=
2
2
,知a=
2
,b2=1.由此能求出椭圆C的方程.
(2)设A(x1,y1),B(x2,y2),P(x0,y0)设y=k(x-1)(k≠0)由
x2
2
+y2=1
y=k(x-1)
,得(1+2k2)x2-4k2x+2k2-2=0.由此能求出求出所有满足条件的点P的坐标及对应的直线方程.
解答:解:(1)∵O到直线l的距离为
2
2
,l:y=x-c,
|c|
2
=
2
2
,∴c=1.
∵e=
2
2
,∴a=
2
,∴b2=1.
∴椭圆C的方程为
x2
2
+y2=1

(2)设A(x1,y1),B(x2,y2),P(x0,y0)设y=k(x-1)(k≠0)
x2
2
+y2=1
y=k(x-1)
,消去y得(1+2k2)x2-4k2x+2k2-2=0.
x1+x2=
4k2
1+2k2

y1+y2=k(x1+x2-2)=k(
4k2
1+2k2
-2)=
-2k
1+2k2

OP
=
OA
+
OB

∴x0=x1+x2=
4k2
1+2k2

∴y0=y1+y2=
-2k
1+2k2

将P点坐标代入椭圆得
(
4k2
1+2k2
)
2
2
+(
-2k
1+2k2
)2=1

k4=
1
4
,∴k2=
1
2
k=±
2
2

k=
2
2
时,P(1,-
2
2
)
,直线l:y=
2
2
(x-1)

k=-
2
2
时,P(1,
2
2
)
,直线l:y=-
2
2
(x-1)
点评:本题考查椭圆C的方程的求法,探究椭圆C上是否存在点P,使得当直线l绕点F转到某一位置时,有
OP
=
OA
+
OB
成立.若存在,求出所有满足条件的点P的坐标及对应的直线方程;若不存在,请说明理由.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一条斜率为1的直线l与离心率e=
2
2
的椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)交于P、Q两点,直线l与y轴交于点R,且
.
OP
.
OQ
=-3,
.
PR
=3
.
RQ
,求直线l和椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

直角坐标系xoy中,已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右顶点分别是A1,A2,上、下顶点为B2,B1,点P(
3
5
a
,m)(m>0)是椭圆C上一点,PO⊥A2B2,直线PO分别交A1B1、A2B2于点M、N.
(1)求椭圆离心率;
(2)若MN=
4
21
7
,求椭圆C的方程;
(3)在(2)的条件下,设R点是椭圆C上位于第一象限内的点,F1、F2是椭圆C的左、右焦点,RQ平分∠F1RF2且与y轴交于点Q,求点Q纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆C:
x2
a2
+
y2
b2
=1的离心率为
3
2
,过椭圆C上一点P(2,1)作倾斜角互补的两条直线,分别与椭圆交于点A、B,直线AB与x轴交于点M,与y轴负半轴交于点N.
(Ⅰ)求椭圆C的方程:
(Ⅱ)若S△PMN=
3
2
,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
2
2
,左焦点为F1(-1,0),右焦点为F2(1,0),短轴两个端点为A、B.与x轴不垂直的直线l与椭圆C交于不同的两点M、N,记直线AM、AN的斜率分别为k1、k2,且k1k2=
3
2

(1)求椭圆C的方程;
(2)求证直线l与y轴相交于定点,并求出定点坐标.
(3)当弦MN的中点P落在△MF1F2内(包括边界)时,求直线l的斜率的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右顶点的坐标分别为A(-2,0),B(2,0),离心率e=
1
2

(Ⅰ)求椭圆C的方程:
(Ⅱ)设椭圆的两焦点分别为F1,F2,若直线l:y=k(x-1)(k≠0)与椭圆交于M、N两点,证明直线AM与直线BN的交点在直线x=4上.

查看答案和解析>>

同步练习册答案