精英家教网 > 高中数学 > 题目详情
15.若函数f(x)为定义在R上的奇函数,且x>0时,f(x)=lg(x+1)
(1)求f(x)的解析式,并画出大致图象;
(2)若对于任意t∈R,不等式f(t2-2t)+f(k-2t2)<0恒成立,求k的取值范围.

分析 (1)由f(x)在R上为奇函数,可得f(0)=0,再由x<0,-x>0,f(x)=-f(-x),即可得到所求解析式,画出分段函数的图象;
(2)由f(x)在R上为奇函数,且为增函数,可得t2-2t<-k+2t2,再由参数分离和二次函数的最值的求法,即可得到所求k的范围.

解答 解:(1)∵f(x)为定义在R上的奇函数,
∴f(0)=0,
x<0时,-x>0,当x>0时,f(x)=lg(x+1)
则f(x)=-f(-x)=-lg(-x+1),
综上,$f(x)=\left\{\begin{array}{l}lg(x+1),x>0\\ 0,x=0\\-lg(-x+1),x<0\end{array}\right.$;
f(x)的大致图象为右图;
(2)由(1)可知f(x)在R上为增函数,
f(t2-2t)+f(k-2t2)<0⇒f(t2-2t)<-f(k-2t2
⇒f(t2-2t)<f(-k+2t2)⇒t2-2t<-k+2t2⇒k<t2+2t恒成立,
由t2+2t=(t+1)2-1≥-1,⇒k<-1,
所以k的取值范围是(-∞-1).

点评 本题考查函数的奇偶性和单调性的判断和运用,考查不等式恒成立问题的解法,注意运用参数分离和二次函数的最值的求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.图中阴影部分所表示的集合是(  )
A.(A∪B)∪(B∪C)B.[∁U(A∩C)]∪BC.(A∪C)∩(∁UB)D.B∩[∁U(A∪C)]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{lnx+k}{ex}$(k为常数,e为自然对数的底数),曲线y=f(x)在点(1,f(1)) 处的切线与x轴平行.
(1)求k的值,并求f (x)的单调区间;
(2)设g(x)=xf′(x),其中f′(x)为f(x)的导函数,证明:对任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知不等式组$\left\{\begin{array}{l}{x+y-2\sqrt{2}≥0}\\{x≤2\sqrt{2}}\\{y≤2\sqrt{2}}\end{array}\right.$表示平面区域Ω,过区域Ω中的任意一个点P,作圆x2+y2=1的两条切线且切点分别为A,B,当△PAB的面积最小时,cos∠APB的值为(  )
A.$\frac{7}{8}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=lnx-$\frac{m}{x}$(m∈R)在区间[1,e]上取得最小值4,则m=(  )
A.-3eB.-1C.-e3D.e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某企业有4个分厂,新培训了一批6名技术人员,将这6名技术人员分配到各分厂,要求每个分厂至少1人,则不同的分配方案种数为(  )
A.1080B.480C.1560D.300

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设x∈R,则x>1的一个必要不充分条件是(  )
A.x>0B.x<0C.x>2D.x<2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=$\frac{1}{\sqrt{{a}^{2}-{x}^{2}}}$,那么y′等于(  )
A.-$\frac{\sqrt{{a}^{2}-{x}^{2}}}{a}$B.$\frac{1}{2}$(a2-x2)${\;}^{\frac{3}{2}}$C.x(a2-x2)${\;}^{-\frac{3}{2}}$D.-$\frac{1}{2}$(a2-x2)${\;}^{\frac{3}{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.半径为4的圆中,一扇形的弧所对的圆心角为45°,则这个扇形的面积为2π.

查看答案和解析>>

同步练习册答案