精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=$\frac{{2}^{x}-m}{{2}^{x}-1}$为奇函数,m∈R.
(1)求m的值;
(2)判断函数f(x)的单调性,并用单调性定义证明;
(3)求函数f(x)在[-2,0)∪(0,3]上的值域.

分析 (1)由f(x)为奇函数便可得到f(-1)=-f(1),这样即可求出m=-1;
(2)分离常数得到$f(x)=1+\frac{2}{{2}^{x}-1}$,根据单调性的定义可以看出f(x)在(-∞,0),(0,+∞)上单调递减,根据减函数的定义证明:定义域内设任意的x1<x2,然后作差,通分,提取公因式,便可得到$f({x}_{1})-f({x}_{2})=\frac{2({2}^{{x}_{2}}-{2}^{{x}_{1}})}{({2}^{{x}_{1}}-1)({2}^{{x}_{2}}-1)}$,根据指数函数的单调性即可判断出x1,x2∈(-∞,0),或x1,x2∈(0,+∞)时,f(x1)>f(x2),从而得出f(x)在(-∞,0),(0,+∞)上单调递减;
(3)根据(2)便有f(x)在[-2,0),(0,3]上单调递减,从而可以得出f(x)≤f(-2),或f(x)≥f(3),这样便可得出f(x)在[-2,0)∪(0,3]上的值域.

解答 解:(1)f(x)为奇函数;
∴f(-1)=-f(1);
即$\frac{\frac{1}{2}-m}{\frac{1}{2}-1}=-\frac{2-m}{2-1}$;
解得m=-1;
(2)$f(x)=\frac{{2}^{x}+1}{{2}^{x}-1}=1+\frac{2}{{2}^{x}-1}$,可以看出x增大时,2x-1增大,∴f(x)减小;
∴f(x)在(-∞,0),(0,+∞)上单调递减,证明如下:
f(x)的定义域为{x|x≠0},设x1,x2∈{x|x≠0},且x1<x2,则:
$f({x}_{1})-f({x}_{2})=\frac{2}{{2}^{{x}_{1}}-1}-\frac{2}{{2}^{{x}_{2}}-1}$=$\frac{2({2}^{{x}_{2}}-{2}^{{x}_{1}})}{({2}^{{x}_{1}}-1)({2}^{{x}_{2}}-1)}$;
∵x1<x2
∴${2}^{{x}_{2}}-{2}^{{x}_{1}}>0$;
∴①x1,x2∈(-∞,0)时,${2}^{{x}_{1}}-1<0,{2}^{{x}_{2}}-1<0$;
∴$({2}^{{x}_{1}}-1)({2}^{{x}_{2}}-1)>0$;
∴f(x1)>f(x2);
②x1,x2∈(0,+∞)时,${2}^{{x}_{1}}-1>0,{2}^{{x}_{2}}-1>0$;
∴f(x1)>f(x2);
∴f(x)在(-∞,0),(0,+∞)上单调递减;
(3)根据(2)知,f(x)在[-2,0),(0,3]上单调递减;
x从左边趋向0时,f(x)趋向负无穷,x从右边趋向0时,f(x)趋向正无穷;
∴$f(x)≤f(-2)=-\frac{5}{3}$,或$f(x)≥f(3)=\frac{9}{7}$;
∴f(x)在[-2,0)∪(0,3]上的值域为$(-∞,-\frac{5}{3}]∪[\frac{9}{7},+∞)$.

点评 考查奇函数的定义,根据单调性的定义判断一个函数的单调性的方法,以及根据减函数的定义证明一个函数为减函数的方法和过程,作差的方法比较f(x1)与f(x2),作差后是分式的一般要通分,以及指数函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\left\{\begin{array}{l}{3-{x}^{2},x∈[-1,2]}\\{x-3,x∈(2,5]}\end{array}\right.$
(1)在给定的直角坐标系内画出f(x)的图象
(2)写出f(x)的单调递增区间与减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若集合A={x|ax2+2x-1=0}只有一个元素,则实数a的值为0或-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若f(x+y)=f(x)f(y),且f(1)=2,$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2014)}{f(2013)}$+$\frac{f(2016)}{f(2015)}$=4030.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若向量$\overrightarrow{a}$=(3,4),且存在实数x,y.且使得$\overrightarrow{a}$=x$\overrightarrow{{e}_{1}}$$+y\overrightarrow{{e}_{2}}$,则$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$可以是 (  )
A.$\overrightarrow{{e}_{1}}$=(0,0),$\overrightarrow{{e}_{2}}$=(-1,2)B.$\overrightarrow{{e}_{1}}$=(-1,3),$\overrightarrow{{e}_{2}}$=(2,-6)
C.$\overrightarrow{{e}_{1}}$=(-1.2),$\overrightarrow{{e}_{2}}$=(3,-1)D.$\overrightarrow{{e}_{1}}$=(-$\frac{1}{2}$,1),$\overrightarrow{{e}_{2}}$=(1,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)在[a,b]上连续,且f(a)<a,f(b)>b,证明至少存在一点ξ∈(a,b),使f(ξ)=ξ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设集合A={x|3x+1-9<0},B={x|log${\;}_{\frac{1}{2}}$x>2},则A∩B等于(  )
A.{x|x>1}B.{x|0<x<4}C.{x|0<x<$\frac{1}{4}$}D.{x|0<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知椭圆$\frac{{x}^{2}}{{m}^{2}}+\frac{{y}^{2}}{{n}^{2}}=1(m>n>0)$与双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(α>0,b>0)有相同的焦点,点A是两曲线在第一象限的交点,F是它们的右焦点,且AF⊥x轴.若椭圆的离心率为$\frac{1}{2}$,则双曲线的离心率为(  )
A.2B.$\sqrt{5}$C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知随机变量ξ的分布列是:
ξ01234
P0.10.20.40.1x
则x=0.2,P(2<ξ<4)=0.1.

查看答案和解析>>

同步练习册答案