精英家教网 > 高中数学 > 题目详情
19.如果(m+4)${\;}^{-\frac{1}{2}}$<(3-2m)${\;}^{-\frac{1}{2}}$,则m的取值范围是$(-\frac{1}{3},\frac{3}{2})$.

分析 由(m+4)-${\;}^{\frac{1}{2}}$<(3-2m)-${\;}^{\frac{1}{2}}$,可得m+4>3-2m>0,解出即可得出.

解答 解:∵(m+4)-${\;}^{\frac{1}{2}}$<(3-2m)-${\;}^{\frac{1}{2}}$,
∴m+4>3-2m>0,
解得$-\frac{1}{3}<m<\frac{3}{2}$.
故m的取值范围为:$-\frac{1}{3}<m<\frac{3}{2}$.
故答案为:$(-\frac{1}{3},\frac{3}{2})$.

点评 本题考查了幂函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若p:x(x-3)<0是q:2x-3<m的充分不必要条件,则实数m的取值范围是[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足an=2an-1+2n-1(n∈N,N≥2),且a4=81
(1)求数列的前三项a1、a2、a3的值;
(2)是否存在一个实数λ,使得数列{$\frac{{a}_{n}+λ}{{2}^{n}}$} 为等差数列?若存在,求出λ值;若不存在,说明理由;求数列{an} 通项公式;
(3)在(2)条件下,试求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=(ax2+x-1)ex(a<0).
(1)讨论f(x)的单调性;
(2)当a=-1时,函数y=f(x)与g(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2+m的图象有三个不同的交点,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.对任意的实数x都有f(x+2)-f(x)=2f(1),若y=f(x-1)的图象关于x=1对称,且f(0)=2,则f(2015)+f(2016)=(  )
A.0B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=$|\begin{array}{l}{{x}^{2}-3x+2}\end{array}|$-b,b∈(0,$\frac{1}{4}$)的零点个数是(  )
A.1个B.3个C.2个D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{2}{3}$,F1、F2分别为其左、右焦点,点M为椭圆C的上的顶点,且,△MF1F2的面积为2$\sqrt{5}$.
(1)求椭圆C的方程;
(2)如图,过圆x2+y2=b2上一点P(点P在y轴右侧),作该圆的切线l,交椭圆C于A,B两点,求△AF2B的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1kg收费22元,超过1kg,则超出部分按每千克10元加收费用.设该公司从西安到南昌快寄樱桃的费用为y(元),所寄樱桃为x(kg).
(1)求y与x之间的函数关系式;
(2)已知小李给外婆快寄了2.5kg樱桃,请你求出这次快寄的费用是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设关于x的不等式x(x-a-1)<0(a∈R)的解集为M,不等式x2-2x-3≤0的解集为N.
(1)当a=4时,求集合M∩N;
(2)若M⊆N,求实数a的取值范围.

查看答案和解析>>

同步练习册答案