精英家教网 > 高中数学 > 题目详情

【题目】试问:能否把2008表示成的形式?如果可以,这种表示方式是否有无限多个?其中,m、n均为大于100且小于170的正整数,;均为两两不相等的小于6的正有理数,均为大于1且小于5的正整数,同时, 两两不相等,也两两不相等请说明理由.

【答案】见解析

【解析】

满足题目要求的表示方式是存在的,且有无限多个.理由如下.

为方便计,试取,考虑和式

.①

注意到

.②

由式①、②得

.

.

这里的取法有无限多个,表示式也有无限多个).

正项共有110+28×2=166个,而负项共有110个,均为两两不等的小于6的正有理数.

(注意到,因为为偶数;又互质,互质,也是因为为偶数;另外,,因为),从而,两两不相等.

显然满足“大于100且小于170,”.

另外,也容易验证:以上的表示方式都满足“也两两不相等”.

综上所述,以上所构造的2008的表示式完全符合题目要求,且表示式有无限多个.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD中,底面ABCD为矩形,PA⊥平面ABCDEPD的中点.

1)证明:平面AEC

2)设AP1AD,三棱锥PABD的体积V,求A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将编号为1,2,…,18的18名乒乓球运动员分配在9张球台上进行单打比赛,规定每一张球台上两选手编号之和均为大于4的平方数.记{7号与18号比赛}为事件p.则p为(  ).

A. 不可能事件 B. 概率为的随机事件

C. 概率为的随机事件 D. 必然事件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间如下:

组号

第一组

第二组

第三组

第四组

第五组

分组

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

(1)求图中a的值;

(2)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;

(3)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2,求其中恰有1人的分数不低于90分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是一个给定的非零实数,在平面直角坐标系中,曲线的方程为,点.

(1)设上的任意一点,试求线段的中点的轨迹的方程并指出曲线的类型和位置;

(2)求出在它们的交点处的各自切线之间的夹角(锐角)(用反三角函数式表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知钝角△ABC中,∠B-∠C=90°,∠C=θ,其外接圆⊙O的半径为R.AD是⊙O的一条直径,过点D作⊙O的切线与BC的延长线交于H,过点DBA的平行线交AC的延长线于E,交过D、O、H的圆于G,联结GH、EH.求△EGH的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥平面平面为棱上的一点为棱的中点为棱上的一点平面是边长为4的正三角形,.

(1)求证:平面平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2021年开始,我省将试行“3+1+2“的普通高考新模式,即除语文、数学、外语3门必选科目外,考生再从物理、历史中选1门,从化学、生物、地理、政治中选2门作为选考科目.为了帮助学生合理选科,某中学将高一每个学生的六门科目综合成绩按比例均缩放成5分制,绘制成雷达图.甲同学的成绩雷达图如图所示,下面叙述一定不正确的是(  )

A.甲的物理成绩领先年级平均分最多

B.甲有2个科目的成绩低于年级平均分

C.甲的成绩从高到低的前3个科目依次是地理、化学、历史

D.对甲而言,物理、化学、地理是比较理想的一种选科结果

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,矩形中,,边上异于端点的动点,,将矩形沿折叠至处,使面(如图2).点满足.

(1)证明:

(2)设,当为何值时,四面体的体积最大,并求出最大值.

查看答案和解析>>

同步练习册答案