精英家教网 > 高中数学 > 题目详情
19、定义在R上的函数f(x)同时满足条件:①对定义域内任意实数a,b,都有f(a+b)=f(a)•f(b);②x>0时,f(x)>1.那么,
(1)试举出满足上述条件的一个具体函数;
(2)求f(0)的值;
(3)比较f(1)和f(3)的大小并说明理由.
分析:(1)由题设条件中所给的函数的性质知此函数应该是一个递增的指数函数,此类函数易找出;
(2)令a>0,b=0,代入f(a+b)=f(a)•f(b),结合性质②求出f(0)的值,
(3)比较f(1)和f(3)的大小可由f(a+b)=f(a)•f(b),及性质②说明理由.
解答:解:(1)由题意知函数的性质与递增的指数函数的性质相同,
故可令f(x)=2x(或f(x)=ax(a>1));(4分)
(2)令a>0,b=0,则f(a)=f(a)•f(0),而f(a)>0,
∴f(0)=1;(4分)
(3)∵f(3)=f(1)+f(2),
∴f(3)-f(1)=f(2)>0,
∴f(1)<f(3)(4分)
点评:本题考查求函数的值,解题的关键是理解函数的两个性质,由两个性质对三个小题作出正确判断.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0,
π
2
]时,f(x)=sinx,则f(
3
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

20、已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)在x=-1处取极值.
(1)求f(x)的解析式;
(2)讨论f(x)在区间[-3,3]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:f(x+2)=
1-f(x)1+f(x)
,当x∈(0,4)时,f(x)=x2-1,则f(2010)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值与最小值的差为4,相邻两个最低点之间距离为π,函数y=sin(2x+
π
3
)图象所有对称中心都在f(x)图象的对称轴上.
(1)求f(x)的表达式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函数f(x)一定存在零点的区间是(  )

查看答案和解析>>

同步练习册答案