精英家教网 > 高中数学 > 题目详情
设椭圆的中心在原点,焦点在x轴上,离心率.已知点到这个椭圆上的点的最远距离为,求这个椭圆方程.
【答案】分析:先设椭圆方程为,M(x,y)为椭圆上的点,由离心率得a=2b,利用两点间的距离公式表示出|PM|2,则当y=-b时|PM|2最大,这种情况不可能;若时,时4b2+3=7,从而求出b值,最后求得所求方程.
解答:解:设椭圆方程为,M(x,y)为椭圆上的点,由得a=2b,

,则当y=-b时|PM|2最大,即
∴b=,故矛盾.
时,时,
4b2+3=7,
b2=1,从而a2=4.
所求方程为 
点评:本小题主要考查函数单调性的应用、椭圆的简单性质、椭圆的标准方程等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆的中心在原点,焦点在x轴上,离心率e=
3
2
.已知点P(0,
3
2
)
到这个椭圆上的点的最远距离为
7
,求这个椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆的中心在原点,坐标轴为对称轴,焦点在x轴上,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为4 ( 
2
-1 )

(1)求此椭圆方程,并求出准线方程;
(2)若P在左准线l上运动,求tan∠F1PF2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆的中心在原点,焦点在轴上,离心率.已知点到这个椭圆上的点的最远距离为,求这个椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆的中心在原点,坐标轴为对称轴, 一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为-4,求此椭圆方程、离心率、准线方程及准线间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为-4,求此椭圆方程.

查看答案和解析>>

同步练习册答案