精英家教网 > 高中数学 > 题目详情

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi , yi)(i=1,2,…,n),用最小二乘法建立的回归方程为 =0.85x﹣85.71,则下列结论中不正确的是(
A.y与x具有正的线性相关关系
B.回归直线过样本点的中心(
C.若该大学某女生身高增加1cm,则其体重约增加0.85kg
D.若该大学某女生身高为170cm,则可断定其体重必为58.79kg

【答案】D
【解析】解:对于A,0.85>0,所以y与x具有正的线性相关关系,故正确;
对于B,回归直线过样本点的中心( ),故正确;
对于C,∵回归方程为 =0.85x﹣85.71,∴该大学某女生身高增加1cm,则其体重约增加0.85kg,故正确;
对于D,x=170cm时, =0.85×170﹣85.71=58.79,但这是预测值,不可断定其体重为58.79kg,故不正确
故选D.
根据回归方程为 =0.85x﹣85.71,0.85>0,可知A,B,C均正确,对于D回归方程只能进行预测,但不可断定.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,AB= =AC=2,E,F分别为A1C1 , BC的中点.
(1)求证:平面ABE⊥平面B1BCC1
(2)求证:C1F∥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,则函数y=f(1﹣x)的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+2|﹣|x+a|
(1)当a=3时,解不等式f(x)≤
(2)若关于x的不等式f(x)≤a解集为R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACBAC3 BC2P是△ABC内的一点.

(1)若P是等腰直角三角形PBC的直角顶点,求PA的长;

(2)若∠BPC,设∠PCBθ,求△PBC的面积S(θ)的解析式,并求S(θ)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =( ,﹣1), =( ),若存在非零实数k,t使得 = +(t2﹣3) =﹣k +t ,且 ,试求: 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某著名歌星在某地举办一次歌友会,有1000人参加,每人一张门票,每张100元.在演出过程中穿插抽奖活动,第一轮抽奖从这1000张票根中随机抽取10张,其持有者获得价值1000元的奖品,并参加第二轮抽奖活动.第二轮抽奖由第一轮获奖者独立操作按钮,电脑随机产生两个实数x,y(x,y∈[0,4]),若满足y≥ ,电脑显示“中奖”,则抽奖者再次获得特等奖奖金;否则电脑显示“谢谢”,则不获得特等奖奖金.
(1)已知小明在第一轮抽奖中被抽中,求小明在第二轮抽奖中获奖的概率;
(2)设特等奖奖金为a元,小李是此次活动的顾客,求小李参加此次活动获益的期望;若该歌友会组织者在此次活动中获益的期望值是至少获得70000元,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为获得较好的收益,每年要投入一定资金用于广告促销,经调查,每年投入广告费(百万元),可增加销售额约为(百万元)(

(1)若该公司当年的广告费控制在4百万元之内,则应该设入多少广告费,才能使该公司获得的收益最大?

(2)现该公司准备共投入6百万元,分别用于广告促销售和技术改造,经预测,每设入技术改造费(百万元),可增加销售额约为(百万元),请设计一种资金分配方案,使该公司由此获得最大收益.(注:收益销售额成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,试求y=[f(x)]2+f(x2)的值域

查看答案和解析>>

同步练习册答案