精英家教网 > 高中数学 > 题目详情

【题目】 .

(1)证明: 上单调递减;

(2)若,证明: .

【答案】(1)见解析;(2)见解析

【解析】试题分析:(1)第(1)问,直接求导,证明0<x<1时, f(x)<0 .(2)第(2)问,

分0<aa<1两种情况证明,每一种情况都是先通过求单调性再求函数的最小值大于1.

试题解析:

(1)f(x)=

h(x)=1--lnx,则h(x)=x>0,

所以0<x<1时,h(x)>0,h(x)单调递增,

h(1)=0,所以h(x)<0,

f(x)<0,所以f(x)单调递减.

(2)g(x)=axlnaaxa-1a(ax-1lnaxa-1),

当0<a时,lna≤-1,所以ax-1lnaxa-1xa-1ax-1

由(Ⅰ)得,所以(a-1)lnx<(x-1)lna,即xa-1ax-1

所以g(x)<0,g(x)在(a,1)上单调递减,

g(x)>g(1)=a+1>1.

a<1时,-1<lna<0.

t(x)=axxlna-1,0<ax<1,则t(x)=axlna-lna=(ax-1)lna>0,

所以t(x)在(0,1)上单调递增,即t(x)>t(0)=0,

所以axxlna+1

所以g(x)=axxaxaxlna+1=x(xa-1+lna)+1>x(1+lna)+1>1.

综上,g(x)>1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在多面体中,四边形是正方形,平面平面.

(1)求证:平面

(2)在线段上是否存在点,使得平面与平面所成的锐二面角的大小为,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的离心率为,椭圆上一点到左右两个焦点的距离之和是4.

(1)求椭圆的方程;

(2)已知过的直线与椭圆交于两点,且两点与左右顶点不重合,若,求四边形面积的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体中,分别是所在棱的中点,点是棱上的动点,联结.如图所示.

1)求异面直线所成角的大小(用反三角函数值表示);

2)(理科)求以为顶点的三棱锥的体积.

(文科)求以为顶点的三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,在五边形中,是以为斜边的等腰直角三角形.现将沿折起,使平面平面,如图②,记线段的中点为.

(1)求证:平面平面

(2)求平面与平面所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中的真命题是( )

A. ,则向量的夹角为钝角

B. ,则

C. 若命题“是真命题”,则命题“是真命题”

D. 命题“”的否定是“

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】河道上有一抛物线型拱桥,在正常水位时,拱圈最高点距水面8m,拱圈内水面宽24m,一条船在水面以上部分高6.5m,船顶部宽6m

1)试建立适当的直角坐标系,求拱桥所在的抛物线的标准方程;

2)近日水位暴涨了1.54m,为此,必须加重船载,降低船身,才能通过桥洞,试问:船身至少应该降低多少?(精确到0.1m

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设抛物线的公共点的横坐标为,过且与相切的直线交于另一点,过且与相切的直线交于另一点,记的面积.

(Ⅰ)求的值(用表示);

(Ⅱ)若,求的取值范围.

注:若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行也不重合,则称该直线与抛物线相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着互联网经济不断发展,网上开店销售农产品的人群越来越多,网上交易额也逐年增加,某一农户农产品连续五年的网银交易额统计表,如下所示:

年份

2012

2013

2014

2015

2016

网上交易额(万元)

5

6

7

8

10

经研究发现,年份与网银交易额之间呈线性相关关系,为了计算的方便,农户将上表的数据进行了处理,,得到如表:

时间代号

1

2

3

4

5

0

1

2

3

5

1)求关于的线性回归方程;

2)通过(1)中的方程.求出关于的回归方程;并用所求回归方程预测到2020年年底,该农户网店网银交易额可达多少?

(附:在线性回归方程中,

查看答案和解析>>

同步练习册答案