精英家教网 > 高中数学 > 题目详情

【题目】已知函数 ).

(1)当时,讨论函数的单调区间;

(2)当时,若对任意恒成立,求的取值范围.

【答案】(1)见解析;(2).

【解析】试题分析:(1)求导数,由导数大于0求增区间,导数小于0求减区间;

(2)讨论三种情况,研究函数的单调性和最值即可.
试题解析:

(1)当时,

①当时, ,所以函数的单调递增区间为

②当时,可知: ,所以当时,

时,

所以函数的单调递增区间为,递减区间为.

(2)当时,

,此时对任意都有

所以恒成立;

下面考虑时的情况:

,对任意都有 ,所以,所以上的增函数,所以,即时满足题意;

,则由 ,可知:一定存在,使得,且当时, ,所以在上, 单调递减,从而有: ,不满足题意.

综上可知, 的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】学校为了解学生在课外读物方面的支出情况,抽取了n名同学进行调查,结果显示这些同学的支出都在[10,50)(单位:元),其中支出在[30,50)(单位:元)的同学有67人,其频率分布直方图如图所示,则n的值为(  )

A. 100 B. 120 C. 130 D. 390

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题10分) 从3名男生和名女生中任选2人参加比赛。

①求所选2人都是男生的概率;

②求所选2人恰有1名女生的概率;

③求所选2人中至少有1名女生的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近期中央电视台播出的《中国诗词大会》火遍全国,下面是组委会在选拔赛时随机抽取的100名选手的成绩,按成绩分组,得到的频率分布表如下所示:

组号

分组

频数

频率

第1组

第2组

第3组

20

第4组

20

第5组

10

合计

100

(1)请先求出频率分布表中①、②位置的相应数据,再完成频率分布直方图(用阴影表示);

(2)为了能选拔出最优秀的选手,组委会决定在笔试成绩高的第3、4、5组中用分层抽样抽取5名选手进入第二轮面试,求第3、4、5组每组各抽取多少名选手进入第二轮面试;

(3)在(2)的前提下,组委会决定在5名选手中随机抽取2名选手接受考官进行面试,求:第4组至少有一名选手被考官面试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知c=2,C=
(1)若△ABC的面积等于 ,求a,b;
(2)若sinC+sin(B﹣A)=2sin2A,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(x+φ)(A>0,0<φ<π),x∈R的最大值是1,其图象经过点
(1)求f(x)的解析式;
(2)已知 ,且 ,求f(α﹣β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知定点A(-4,0)、C(4,0),半径为r的圆M的圆心M在线段AC的垂直平分线上,且在y轴右侧,圆My轴截得的弦长为 r.

(1)求圆M的方程;(2)r变化时,是否存在定直线l与动圆M均相切?如果存在,求出定直线l的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义平面向量之间的一种运算“⊙”如下:对任意的 ,令 =mq-np,下面说法错误的是(
A.若 共线,则 =0
B. =
C.对任意的λ∈R,有 =
D.( 2+( 2=| |2| |2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某生态园将一块三角形地的一角开辟为水果园,已知角 的长度均大于200米,现在边界处建围墙,在处围竹篱笆.

(1)若围墙总长度为200米,如何可使得三角形地块面积最大?

(2)已知竹篱笆长为米, 段围墙高1米, 段围墙高2米,造价均为每平方米100元,若,求围墙总造价的取值范围.

查看答案和解析>>

同步练习册答案