精英家教网 > 高中数学 > 题目详情
已知函数f(x)和g(x)都是定义在R上的奇函数,设F(x)=a2f(x)+bg(x)+2,若F(2)=4,则F(-2)=
0
0
分析:令h(x)=F(x)-2,证明函数h(x)为奇函数,再由F(2)=4,求得h(2)的值,可得h(-2)的值,从而求得F(2)的值.
解答:解:令h(x)=F(x)-2=a2f(x)+bg(x),
由于f(x)和g(x)都是定义在R上的奇函数,
故函数h(-x)=a2f(-x)+bg(-x)=-a2f(x)-bg(x)=-h(x),
故函数h(x)为奇函数.
再由F(2)=4,可得h(2)=F(2)-2=4-2=2,
故h(-2)=-h(2)=-2=F(2)-2,求得F(2)=0,
故答案为 0.
点评:本题主要考查利用函数的奇偶性求函数的值,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的定义域都是实数集R,f(x)是奇函数,g(x)是偶函数.且当x<0时,f′(x)g(x)+f(x)g′(x)>0,g(-2)=0,则不等式f(x)g(x)<0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的图象关于y轴对称,且f(x)=x2+
1
2
x
.则不等式g(x)≥f(x)-|x-4|的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.
(Ⅰ) 求函数g(x)的解析式;
(Ⅱ)解不等式g(x)≥f(x)-|x-1|;
(Ⅲ)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函数,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.
(1)求函数g(x)的解析式;
(2)λ≠-1,若h(x)=g(x)-λf(x)+1在x∈[-1,1]上是增函数,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的图象关于原点对称,且g(x)=-x2+2x.
(1)求函数f(x)的解析式;
(2)解不等式f(x)≤g(x)+|x-1|;
(3)若函数h(x)=f(x)+λ•g(x)+1在区间[-1,1]上是增函数,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案