精英家教网 > 高中数学 > 题目详情

【题目】数列{an}满足a1= ,an+1=an2﹣an+1(n∈N*),则m= + +…+ 的整数部分是(
A.0
B.1
C.2
D.3

【答案】B
【解析】解:由题设知,an+1﹣1=an(an﹣1),
= =

通过累加,得
m= + +…+ = =2﹣
由an+1﹣an=(an﹣1)2≥0,
即an+1≥an
,a3=
∴a2015≥a2014≥a2013≥…≥a3>2,
∴a2005﹣1>1,
∴0< <1,
∴1<m<2,
所以m的整数部分为1.
故选B.
【考点精析】利用数列的前n项和对题目进行判断即可得到答案,需要熟知数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,底面是边长为3的正方形,平面与平面所成的角为.

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,A,B,C的对边分别是a,b,c,3sin2C+8sin2A=11sinAsinC,且c<2a.
(1)求证:△ABC为等腰三角形
(2)若△ABC的面积为8 .且sinB= ,求BC边上的中线长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:

气温/

18

13

10

-1

用电量/

24

34

38

64

由表中数据得线性回归方程中,≈-2,预测当气温为-4℃时,用电量为多少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四种说法中,
①命题“存在x∈R,x2﹣x>0”的否定是“对于任意x∈R,x2﹣x<0”;
②命题“p且q为真”是“p或q为真”的必要不充分条件;
③已知幂函数f(x)=xα的图象经过点(2, ),则f(4)的值等于
④已知向量 =(3,﹣4), =(2,1),则向量 在向量 方向上的投影是
说法错误的个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若执行如图所示的程序框图,输出S的值为3,则判断框中应填入的条件是(

A.k<6?
B.k<7?
C.k<8?
D.k<9?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得=80, =20, =184, =720.

(1)求家庭的月储蓄y对月收入x的线性回归方程ybxa

(2)判断变量xy之间是正相关还是负相关;

(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.

附:线性回归方程ybxa中, ab,其中 为样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣a|+|x﹣1|.
(1)当a=3时,求不等式f(x)≥2的解集;
(2)若f(x)≥5﹣x对x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某制瓶厂要制造一批轴截面如图所示的瓶子,瓶子是按照统一规格设计的,瓶体上部为半球体,下部为圆柱体,并保持圆柱体的容积为.设圆柱体的底面半径为x,圆柱体的高为h,瓶体的表面积为S.

(1)写出S关于x的函数关系式;

(2)如何设计瓶子的尺寸(不考虑瓶壁的厚度),可以使表面积S最小,并求出最小值.

查看答案和解析>>

同步练习册答案