精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=2sin2x+2 sinxsin(x+ )(ω>0).
(1)求f(x)的最小正周期;
(2)求函数f(x)在区间[0, ]上的取值范围.

【答案】
(1)解:由三角函数公式化简可得

f(x)=2sin2x+2 sinxsin(x+

=2sin2x+2 sinxcosx

=1﹣cos2x+ sin2x

=1+2sin(2x﹣

∴f(x)的最小正周期T=


(2)解:∵x∈[0, ],∴2x﹣ ∈[﹣ ],

∴sin(2x﹣ )∈[﹣ ,1],

∴2sin(2x﹣ )∈[﹣1,2],

∴1+2sin(2x﹣ )∈[0,3],

∴函数f(x)在区间[0, ]上的取值范围为:[0,3]


【解析】(1)由三角函数公式化简可得f(x)=1+2sin(2x﹣ ),由周期公式可得;(2)由x∈[0, ]结合三角函数的性质可得取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,∠C90°AC8 cmAB10 cm,点PC出发以每秒2 cm的速度沿线段CA向点A运动(不运动至A)O的圆心在BP上,且⊙O分别与ABAC相切,当点P运动2 s时,⊙O的半径是(  )

A. cm B. cm C. cm D. 2 cm

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费,并将各地的销售收益绘制成频率分布直方图(如图所示),由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.

(1)根据频率分布直方图计算各小长方形的宽度;
(2)估计该公司投入4万元广告费之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值)
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:

广告投入x(单位:万元)

1

2

3

4

5

销售收益y(单位:万元)

2

3

2

7

表格中的数据显示,x与y之间存在线性相关关系,请将(2)的结果填入空白栏,并计算y关于x的回归方程.
回归直线的斜率和截距的最小二乘法估计公式分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)设

若函数处的切线过点,求的值;

时,若函数上没有零点,求的取值范围;

2)设函数,且),求证:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数 的图象,只要将函数y=sin2x的图象(
A.向右平移 个单位长度
B.向左平移 个单位长度
C.向右平移 个单位长度
D.向左平移 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有一块大型的广告宣传版面,其形状如图所示的直角梯形.某厂家因产品宣传的需要,拟出资规划出一块区域(图中阴影部分)为产品做广告,形状为直角梯形(点在曲线段上,点在线段上).已知,其中曲线段是以为顶点,为对称轴的抛物线的一部分.

(1)求线段,线段,曲线段所围成区域的面积;

(2)求厂家广告区域的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.

(1)令,求的单调区间

(2)当时,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=3x+x,g(x)=x3+x,h(x)=log3x+x的零点依次为a,b,c,则(
A.c<b<a
B.a<b<c
C.c<a<b
D.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F1 , F2为椭圆 的左右焦点,若椭圆上存在点P使得 ,则此椭圆的离心率的取值范围是(
A.(0,
B.(0, ]
C.( ]
D.[ ,1)

查看答案和解析>>

同步练习册答案