精英家教网 > 高中数学 > 题目详情
(2011•昌平区二模)已知抛物线的方程是y2=8x,双曲线的右焦点是抛物线的焦点,离心率为2,则双曲线的标准方程是
x2-
y2
3
=1
x2-
y2
3
=1
,其渐近线方程是
y=±
3
x
y=±
3
x
分析:先根据抛物线方程求得焦点坐标,进而确定双曲线的顶点,求得双曲线中的a,根据离心率进而求c,最后根据b2=c2-a2求得b,则双曲线的方程及其渐近线方程可得.
解答:解:由题可设双曲线的方程为:
x2
a2
-
y2
b2
=1.
∵抛物线y2=8x中2p=8,
p
2
=2

∴其焦点F(2,0),
又因为双曲线的右焦点是抛物线的焦点,
则有:c=2,又e=
c
a
=2
∴a=1,故b2=c2-a2=4-1=3,
双曲线的方程为 x2-
y2
3
=1.
其渐近线方程是 y=±
3
x

故答案为:x2-
y2
3
=1
y=±
3
x
点评:本题主要考查了双曲线的标准方程、圆锥曲线的共同特征,解答关键是对于圆锥曲线的共同特征的理解与应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•昌平区二模)已知集合A={x|x≥3},B={1,2,3,4},则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•昌平区二模)一个正方形的内切圆半径为2,向该正方形内随机投一点P,点P恰好落在圆内的概率是
π
4
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•昌平区二模)如图所示,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2,点E为AB的中点.
(1)求证:BD1∥平面A1DE;
(2)求证:D1E⊥A1D;
(3)在线段AB上是否存在点M,使二面角D1-MC-D的大小为
π6
?若存在,求出AM的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•昌平区二模)已知集合A={x|x≥3},B={x|(x-2)(x-4)<0},则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•昌平区二模)若不等式组
x+2y-5≤0
x≥1
y≥1
表示的平面区域是一个三角形,则此三角形的面积是
1
1
;若x,y满足上述约束条件,则z=x-y的最大值是
2
2

查看答案和解析>>

同步练习册答案