精英家教网 > 高中数学 > 题目详情
12.如图,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/时的速度前进,舰艇乙沿北偏东50°的方向以80海里/时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.

分析 连接EF,延长AE、BF相交于点C,然后求出∠EOF=$\frac{1}{2}$∠AOB,判断出符合探索延伸的条件,再根据探索延伸的结论解答即可.

解答 解:连接EF,延长AE、BF相交于点C,

∵∠AOB=30°+90°+(90°-70°)=140°,∠EOF=70°,
∴∠EOF=$\frac{1}{2}$∠AOB,
又∵OA=OB,∠OAC+∠OBC=(90°-30°)+(70°+50°)=180°,
∴符合探索延伸中的条件,
∴结论EF=AE+BF成立,
即EF=1.5×(60+80)=210海里.
答:此时两舰艇之间的距离是210海里

点评 本题考查了利用数学知识解决实际问题,读懂问题背景的求解思路,作辅助线是解题的关键,也是本题的难点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.函数y=sin(x+$\frac{π}{6}$),x∈[0,$\frac{π}{2}$]的值域是[$\frac{1}{2}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知△ABC中,a=1,b=3,∠C=60°,则S△ABC=$\frac{3\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=cos2x+2sinxcosx-sin2x,求:
(1)函数f(x)的最小正周期;
(2)函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=$\frac{2}{\sqrt{x}+5}$的定义域是[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知α∈(0,$\frac{π}{2}$),且4tan(2π+α)+3sin(6π+β)-10=0,-2tan(-α)-12sin(-β)+2=0,则tanα的值为(  )
A.-3B.3C.±3D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.$\underset{lim}{x→1}$$\frac{sin({x}^{2}-1)}{x+1}$=0,$\underset{lim}{x→1}$$\frac{{x}^{2}-1}{x-1}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-3,4),求向量$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{a}$-$\overrightarrow{b}$,2$\overrightarrow{a}$-4$\overrightarrow{b}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=2x2-mx+3在(-∞,2)上是减函数,在(2,+∞)上是增函数,则m的值为8.

查看答案和解析>>

同步练习册答案