精英家教网 > 高中数学 > 题目详情

【题目】有一矩形硬纸板材料(厚度忽略不计),一边长为6分米,另一边足够长.现从中截取矩形(如图甲所示),再剪去图中阴影部分,用剩下的部分恰好能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中是以为圆心、的扇形,且弧,分别与边, 相切于点,

(1)当长为1分米时,求折卷成的包装盒的容积;

(2)当的长是多少分米时,折卷成的包装盒的容积最大?

【答案】(1)当长为1分米时,折卷成的包装盒的容积为立方分米.(2)当的长为2分米时,折卷成的包装盒的容积最大

【解析】试题分析:(1)先根据扇形面积减去三角形面积得弓形面积,即为柱体底面积,再根据柱体体积公式求体积(2)同(1)先计算底面积,再表示高,代入柱体体积公式得容积函数关系式,最后利用导数求最值

试题解析:解:(1)在图甲中,连接于点.设

中,因为,所以,则

从而,即.

故所得柱体的底面积

.

又所得柱体的高

所以 .

答:当长为1分米时,折卷成的包装盒的容积为立方分米.

(2)设,则,所以所得柱体的底面积

.

又所得柱体的高

所以 ,其中.

,则由

解得.

列表如下:

0

极大值

所以当时, 取得最大值.

答:当的长为2分米时,折卷成的包装盒的容积最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某三棱锥的三视图如图所示,则该三棱锥最长的棱的棱长为( )

A. 3 B. C. D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数).

(Ⅰ)当的最小值

(Ⅱ)若函数恰有两个不同极值点

①求的取值范围

②求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若不等式的解集为,求实数的值;

(2)在(1)的条件下,若存在实数使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆的下顶点为,点是椭圆上异于点的动点,直线分别与轴交于点,且点是线段的中点.当点运动到点处时,点的坐标为

(1)求椭圆的标准方程;

(2)设直线轴于点,当点均在轴右侧,且时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三棱柱中,已知侧面.

1)求证 平面

2是棱长上的一点,若二面角的正弦值为的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示为一正方体的平面展开图,在这个正方体中,有下列四个命题:

AFGC

BDGC成异面直线且夹角为60

BDMN

BG与平面ABCD所成的角为45.

其中正确的个数是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在斜三棱柱,底面为正三角形,, ,

.

(1)求异面直线所成角的余弦值;

(2)的中点,求面与面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】S是实数集R的非空子集,若对任意xyS,都有xyxyxyS,则称S为封闭集.下列命题:①集合S={ab|ab为整数}为封闭集;②若S为封闭集,则一定有0∈S;③封闭集一定是无限集;④若S为封闭集,则满足STR的任意集合T也是封闭集.其中真命题是________.(写出所有真命题的序号)

查看答案和解析>>

同步练习册答案