【题目】已知函数,其中
为自然对数的底数.
(1)设函数(其中
为
的导函数),判断
在
上的单调性;
(2)若函数在定义域内无零点,试确定正数
的取值范围.
【答案】(1) 在
上单调递增.(2)
.
【解析】
(1)先分析得到,即得函数
在
上的单调性;(2)先利用导数求出
,再对a分三种情况讨论,讨论每一种情况下的零点情况得解.
(1)因为,则
,
,
∴,
∴在
上单调递增.
(2)由知
,
由(1)知在
上单调递增,且
,可知当
时,
,
则有唯一零点,设此零点为
,
易知时,
,
单调递增;
时,
,
单调递减,
故,其中
.
令,
则,
易知在
上恒成立,所以
,
在
上单调递增,且
.
①当时,
,由
在
上单调递增知
,
则,由
在
上单调递增,
,所以
,故
在
上有零点,不符合题意;
②当时,
,由
的单调性知
,则
,此时
有一个零点,不符合题意;
③当时,
,由
的单调性知
,则
,此时
没有零点.
综上所述,当无零点时,正数
的取值范围是
.
科目:高中数学 来源: 题型:
【题目】已知椭圆:
的焦点
的坐标为
,
的坐标为
,且经过点
,
轴.
(1)求椭圆的方程;
(2)设过的直线
与椭圆
交于
两不同点,在椭圆
上是否存在一点
,使四边形
为平行四边形?若存在,求出直线
的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点F到左顶点的距离为3.
(1)求椭圆C的方程;
(2)设O是坐标原点,过点F的直线与椭圆C交于A,B两点(A,B不在x轴上),若,延长AO交椭圆与点G,求四边形AGBE的面积S的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《算法统宗》全称《新编直指算法统宗》,是屮国古代数学名著,程大位著.书中有如下问题:“今有五人均银四十两,甲得十两四钱,戊得五两六钱.问:次第均之,乙丙丁各该若干?”意思是:有5人分40两银子,甲分10两4钱,戊分5两6钱,且相邻两项差相等,则乙丙丁各分几两几钱?(注:1两等于10钱)( )
A.乙分8两,丙分8两,丁分8两B.乙分8两2钱,丙分8两,丁分7两8钱
C.乙分9两2钱,丙分8两,丁分6两8钱D.乙分9两,丙分8两,丁分7两
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】传染病的流行必须具备的三个基本环节是:传染源、传播途径和人群易感性.三个环节必须同时存在,方能构成传染病流行.呼吸道飞沫和密切接触传播是新冠状病毒的主要传播途径,为了有效防控新冠状病毒的流行,人们出行都应该佩戴口罩.某地区已经出现了新冠状病毒的感染病人,为了掌握该地区居民的防控意识和防控情况,用分层抽样的方法从全体居民中抽出一个容量为100的样本,统计样本中每个人出行是否会佩戴口罩的情况,得到下面列联表:
戴口罩 | 不戴口罩 | |
青年人 | 50 | 10 |
中老年人 | 20 | 20 |
(1)能否有的把握认为是否会佩戴口罩出行的行为与年龄有关?
(2)用样本估计总体,若从该地区出行不戴口罩的居民中随机抽取5人,求恰好有2人是青年人的概率.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】百年大计,教育为本.某校积极响应教育部号召,不断加大拔尖人才的培养力度,为清华、北大等排名前十的名校输送更多的人才.该校成立特长班进行专项培训.据统计有如下表格.(其中表示通过自主招生获得降分资格的学生人数,
表示被清华、北大等名校录取的学生人数)
年份(届) | 2014 | 2015 | 2016 | 2017 | 2018 |
41 | 49 | 55 | 57 | 63 | |
82 | 96 | 108 | 106 | 123 |
(1)通过画散点图发现与
之间具有线性相关关系,求
关于
的线性回归方程;(保留两位有效数字)
(2)若已知该校2019年通过自主招生获得降分资格的学生人数为61人,预测2019年高考该校考人名校的人数;
(3)若从2014年和2018年考人名校的学生中采用分层抽样的方式抽取出5个人回校宣传,在选取的5个人中再选取2人进行演讲,求进行演讲的两人是2018年毕业的人数的分布列和期望.
参考公式:,
参考数据:,
,
,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com