精英家教网 > 高中数学 > 题目详情
1.下列给出的函数中,定义域为R且有零点的函数是(  )
A.y=2x-1B.y=lg(x2+1)C.y=$\sqrt{{2}^{|x|}-\frac{1}{2}}$D.y=x${\;}^{-\frac{1}{2}}$

分析 逐一分析四个函数的定义域和零点个数,可得答案.

解答 解:函数y=2x-1定义域为R,但无零点;
函数y=lg(x2+1)定义域为R,零点为0;
函数y=$\sqrt{{2}^{|x|}-\frac{1}{2}}$定义域为R,但无零点;
函数y=x${\;}^{-\frac{1}{2}}$定义域为(0,+∞),且无零点;
故选:B.

点评 本题考查的知识点是函数的定义域与函数的零点,熟练掌握各种基本初等函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.在三棱锥P-ABC中,平面PAB⊥平面ABC,CA⊥平面PAB,PA=PB=AB=2$\sqrt{3}$,AC=4,则三棱锥P-ABC的外接球的表面积为(  )
A.24πB.32πC.48πD.64π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知命题p:所有有理数都是实数;命题q:?x∈R,sinx=$\frac{\sqrt{5}}{2}$,则下列命题中为真命题的是(  )
A.¬p∨qB.p∧qC.¬p∧¬qD.¬p∨¬q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=5x-1+1恒过定点(  )
A.(1,2)B.(1,1)C.(-1,1)D.(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设[x]表示不大于x的最大整数,集合A={x|x2-2[x]=3},B={x|$\frac{1}{8}$<2x<8},则A∩B={-1,$\sqrt{7}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f ( x)=ax5+bx-$\frac{c}{x}$+2,f (2)=4,则 f(-2)=(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知F(x)取f(x)=3-2|x|,g(x)=x2-2x中的较小者,若记函数G(x)=(F(x)-a)(F(x)-7),则当G(x)有零点时,实数a的范围是(  )
A.(-∞,3]B.(-∞,7-2$\sqrt{7}$]C.[-1,3]D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.观察此数列1,3,6,10,x,21,28,…,项之间的关系并推测出x的值是(  )
A.12B.15C.17D.18

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=tanωx+|tanωx|(ω>0)图象的相邻的两支截直线y=π所得线段长为$\frac{π}{4}$,则函数f(x)的单调递增区间为[$\frac{kπ}{4}$,<$\frac{kπ}{4}$+$\frac{π}{8}$),k∈Z.

查看答案和解析>>

同步练习册答案