【题目】袋中有质地、大小完全相同的5个小球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏.甲先摸出一个球.记下编号,放回后再摸出一个球,记下编号,如果两个编号之和为偶数.则算甲赢,否则算乙赢.
(1)求甲赢且编号之和为6的事件发生的概率:
(2)试问:这种游戏规则公平吗.请说明理由.
【答案】
(1)解:由题意知本题是一个古典概型,
试验发生包含的甲、乙两人取出的数字共有5×5=25(个)等可能的结果,
设“两个编号和为6”为事件A,
则事件A包含的基本事件为(1,5),(2,4),(3,3),(4,2),(5,1)共5个,
根据古典概型概率公式得到P(A)= =
(2)解:这种游戏规则是不公平的.
设甲胜为事件B,乙胜为事件C,
则甲胜即两编号和为偶数所包含的基本事件数有13个:
(1,1),(1,3),(1,5),(2,2),(2,4),
(3,1),(3,3),(3,5),(4,2),(4,4),
(5,1),(5,3),(5,5)
∴甲胜的概率P(B)=
乙胜的概率P(C)=1﹣P(B)=
∴这种游戏规则是不公平的
【解析】(1)本题是一个古典概型,试验发生包含的甲、乙两人取出的数字共有5×5种等可能的结果,满足条件的事件可以通过列举法得到,根据古典概型的概率公式得到结果.(2)要判断这种游戏是否公平,只要做出甲胜和乙胜的概率,先根据古典概型做出甲胜的概率,再由1减去甲胜的概率,得到乙胜的概率,得到两个人胜的概率相等,得到结论.
科目:高中数学 来源: 题型:
【题目】已知递增等比数列{an}的第三项、第五项、第七项的积为512,且这三项 分别减去1,3,9后成等差数列.
(1)求{an}的首项和公比;
(2)设Sn=a12+a22+…+an2 , 求Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用an表示自然数n的所有因数中最大的那个奇数,例如:9的因数有1,3,9,则a9=9;10的因数有1,2,5,10,则a10=5,记数列{an}的前n项和为Sn , 则S = .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.
(1)求椭圆E的标准方程;
(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列an的首项a1=2,且an=2an﹣1﹣1(nN+ , n≥2).
(1)求数列{an}的通项公式;
(2)求数列{nan﹣n}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一座大桥既是交通拥挤地段,又是事故多发地段,为了保证安全,交通部门规定:大桥上的车距d(m)与车速v(km/h)和车身长l(m)的关系满足:d=kv2l+ l(k为正的常数),假定大桥上的车的车身长都为4m,当车速为60km/h时,车距为2.66个车身长.
(1)写出车距d关于车速v的函数关系式;
(2)应规定怎样的车速,才能使大桥上每小时通过的车辆最多?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知方程C:x2+y2﹣2x﹣4y+m=0,
(1)若方程C表示圆,求实数m的范围;
(2)在方程表示圆时,该圆与直线l:x+2y﹣4=0相交于M、N两点,且|MN|= ,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在中学生综合素质评价某个维度的测评中,分优秀、合格、尚待改进三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:
表一:男生
表二:女生
(1)从表二的非优秀学生中随机抽取2人交谈,求所选2人中恰有1人测评等级为合格的概率;
(2)由表中统计数据填写下面的列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.
参考公式: ,其中.
参考数据:
0.10 | 0.05 | 0.01 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com