精英家教网 > 高中数学 > 题目详情
已知圆C:x2-2x+y2-2=0,点A(-2,0)及点B(4,a),从A点观察B点,要使视线不被圆C挡住,则实数a的取值范围是(  )
分析:先设过A的直线方程为:kx-y+2k=0,根据“使视线不被圆C挡住”则找到直线与圆相切的位置,这样,先求得圆心到直线的距离,再让其等于半径,求得切线方程,再令x=4得
y=±3
2
,从而求得实数a的取值范围.
解答:解:圆C:x2-2x+y2-2=0 即(x-1)2+y2=3.
 设过A的直线方程为:kx-y+2k=0,圆心(1,0)到直线的距离为:d=
|k-0+2k|
k2+1

∵直线与圆相切,∴d=
|3k|
k2+1
=r=
3
,解得k=±
2
2

故圆的过点A(-2,0)的切线方程为 y=±
2
2
(x+2).
再把x=4代入圆的切线方程求得y=±3
2

故要使视线不被圆C挡住,则实数a的取值范围是 (-∞,-3
2
)∪(3
2
,+∞)

故选D.
点评:本题主要考查直线与圆的位置关系,作为相切是研究相交和相离的关键位置,应熟练掌握,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:x2-2x+y2=0,直线l:x+y-4=0.
(1)若直线l′⊥l且被圆C截得的弦长为
3
,求直线l′的方程;
(2)若点P是直线l上的动点,PA、PB与圆C相切于点A、B,求四边形PACB面积的最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年黑龙江省哈尔滨三中高二(上)期中数学试卷(文科)(解析版) 题型:选择题

已知圆C:x2-2x+y2-2=0,点A(-2,0)及点B(4,a),从A点观察B点,要使视线不被圆C挡住,则实数a的取值范围是( )
A.(-∞,-1)∪(1,+∞)
B.(-∞,-2)∪(2,+∞)
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年黑龙江省哈尔滨三中高二(上)期中数学试卷(文科)(解析版) 题型:选择题

已知圆C:x2-2x+y2-2=0,点A(-2,0)及点B(4,a),从A点观察B点,要使视线不被圆C挡住,则实数a的取值范围是( )
A.(-∞,-1)∪(1,+∞)
B.(-∞,-2)∪(2,+∞)
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年黑龙江省哈尔滨三中高二(上)期中数学试卷(理科)(解析版) 题型:选择题

已知圆C:x2-2x+y2-2=0,点A(-2,0)及点B(4,a),从A点观察B点,要使视线不被圆C挡住,则实数a的取值范围是( )
A.(-∞,-1)∪(1,+∞)
B.(-∞,-2)∪(2,+∞)
C.
D.

查看答案和解析>>

同步练习册答案