精英家教网 > 高中数学 > 题目详情

已知点P是圆x2+y2=4上一动点,定点Q(4,0).
(1)求线段PQ中点的轨迹方程;
(2)设∠POQ的平分线交PQ于R,求R点的轨迹方程.

解:(1)设PQ中点M(x,y),则P(2x-4,2y),代入圆的方程得(x-2)2+y2=1.
(2)设R(x,y),由==
设P(m,n),则有m=,n=
代入x2+y2=4中,得
(x-2+y2=(y≠0).
分析:(1)设PQ中点M(x,y),则P(2x-4,2y),代入圆的方程即得线段PQ中点的轨迹方程.
(2)设R(x,y),由三角形角平分线性质得出一个比例式,再设P(m,n),得出关于m,n与x,y的关系式,代入x2+y2=4中,即得R点的轨迹方程.
点评:求曲线的轨迹方程常采用的方法有直接法、定义法、相关点代入法、参数法,本题主要是利用直接法和相关点代入法,直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程.相关点代入法 根据相关点所满足的方程,通过转换而求动点的轨迹方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P是圆x2+y2=1上一动点,点P在y轴上的射影为Q,设满足条件
QM
QP
(λ为非零常数)的点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)若存在过点N(
1
2
,0)
的直线l与曲线C相交于A、B两点,且
OA
OB
=0(O为坐标原点),求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是圆x2+y2=1上的动点,点P在y轴上的射影为Q,设满足条件
QM
=2
QP
的点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)设过点N(1,0)且斜率为k1(k1≠0)的直线l被曲线C所截得的弦的中点为A,O为坐标原点,直线OA的斜率为k2,求k12+k22的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是圆x2+y2=1上任意一点,过点P作y轴的垂线,垂足为Q,点R满足
RQ
=
3
PQ
,记点R的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)设A(0,1),点M、N在曲线C上,且直线AM与直线AN的斜率之积为
2
3
,求△AMN的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点P是圆x2+y2=1上的动点,点P在y轴上的射影为Q,设满足条件数学公式的点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)设过点N(1,0)且斜率为k1(k1≠0)的直线l被曲线C所截得的弦的中点为A,O为坐标原点,直线OA的斜率为k2,求k12+k22的最小值.

查看答案和解析>>

科目:高中数学 来源:2011年湖北省黄冈市高考数学交流试卷3(文科)(解析版) 题型:解答题

已知点P是圆x2+y2=1上的动点,点P在y轴上的射影为Q,设满足条件的点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)设过点N(1,0)且斜率为k1(k1≠0)的直线l被曲线C所截得的弦的中点为A,O为坐标原点,直线OA的斜率为k2,求k12+k22的最小值.

查看答案和解析>>

同步练习册答案