设椭圆的中心和抛物线的顶点均为原点,、的焦点均在轴上,过的焦点F作直线,与交于A、B两点,在、上各取两个点,将其坐标记录于下表中:
(1)求,的标准方程;
(2)若与交于C、D两点,为的左焦点,求的最小值;
(3)点是上的两点,且,求证:为定值;反之,当为此定值时,是否成立?请说明理由.
(1) : ;(2);(3)证明见解析.
解析试题分析:(1)分析哪些点在椭圆上,哪些点在抛物线上,显然是椭圆的顶点,因此,从而点是椭圆上的点,另两点在抛物线上,代入它们的标准方程可求得其方程;(2)与的顶点都是,底在同一直线上,因此基、其面积之比为底的比,即,这样我们只要求出直线与已知两曲线相交弦长即可,直线与曲线交于两点,其弦长为,当然由于直线过圆锥曲线的焦点,弦长也可用焦半径公式表示;(3)从题意可看出,只有把,求出来,才能得出结论,为了求,,我们可设方程为,则方程为,这样,都能用表示出来,再计算可得其为定值,反之若,我们只能设方程为,方程为,分别求出,代入此式,得出,如果一定能得到1,则就一定有,否则就不一定有.
试题解析:(1)在椭圆上,在抛物线上,
: (4分)
(2)(理) =.
是抛物线的焦点,也是椭圆的右焦点,①当直线的斜率存在时,
设:,,
联立方程,得,时恒成立.
(也可用焦半径公式得:) (5分)
联立方程,得,恒成立.
, (6分)
=. (8分)
②当直线的斜率不存在时,:,
此时,
科目:高中数学 来源: 题型:解答题
已知椭圆的中心在原点,焦点在轴上,椭圆上的点到焦点的最小距离为,离心率.
(1)求椭圆的方程;
(2)若直线交于、两点,点,问是否存在,使?若存在求出的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的长轴长为,离心率为,分别为其左右焦点.一动圆过点,且与直线相切.
(1)(ⅰ)求椭圆的方程;(ⅱ)求动圆圆心轨迹的方程;
(2)在曲线上有四个不同的点,满足与共线,与共线,且,求四边形面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系xOy中,椭圆的离心率为,过椭圆右焦点作两条互相垂直的弦与.当直线斜率为0时,.
(1)求椭圆的方程;
(2)求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆的左、右焦点分别为,其上顶点为已知是边长为的正三角形.
(1)求椭圆的方程;
(2)过点任作一动直线交椭圆于两点,记.若在线段上取一点,使得,当直线运动时,点在某一定直线上运动,求出该定直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知平面内一动点到两个定点、的距离之和为,线段的长为.
(1)求动点的轨迹;
(2)当时,过点作直线与轨迹交于、两点,且点在线段的上方,线段的垂直平分线为
①求的面积的最大值;
②轨迹上是否存在除、外的两点、关于直线对称,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,
已知椭圆E:的离心率为,过左焦点且斜率为的直线交
椭圆E于A,B两点,线段AB的中点为M,直线:交椭圆E于C,D两点.
(1)求椭圆E的方程;
(2)求证:点M在直线上;
(3)是否存在实数,使得四边形AOBC为平行四边形?若存在求出的值,若不存在说明理
由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com