精英家教网 > 高中数学 > 题目详情

设f(x)是定义在R上的奇函数,当x<0时,f′(x)>0,且数学公式,则不等式f(x)<0的解集为________.


分析:由函数f(x)是定义在R上的奇函数,,则=f(0)=f()=0,则可以将定义域R分为(-∞,-1),(-1,0),(0,1),(1,+∞)四个区间结合单调性进行讨论,可得答案.
解答:∵当x<0时,f′(x)>0,∴f(x)在(-∞,0)上为减函数,

∴不等式f(x)<0的解集为
∵f(x)是定义在R上的奇函数,
∴f(x)在(0,+∞)上为增函数,且f()=0,
∴不等式f(x)<0的解集为
综上不等式f(x)<0的解集为
故答案为:
点评:解答本题的关键是根据已知条件,结合奇函数的性质,找出函数的零点,并以零点为端点将定义域分为几个不同的区间,然后在每个区间上结合函数的单调性进行讨论,这是分类讨论思想在解决问题的巨大作用的最好体现,分类讨论思想往往能将一个复杂的问题的简单化,是高中阶段必须要掌握的一种方法.属中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3、设f(x)是定义在R上的奇函数,且f(3)+f(-2)=2,则f(2)-f(3)=
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的偶函数,当x≥0时,f(x)=2x+2x-1,则f(-1)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且f(1)=0,当x>0时,有f(x)>xf′(x)恒成立,则不等式xf(x)>0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且y=f(x)满足f(1-x)=f(x),且f( 
1
2
 )=2
,则f(1)+f(
3
2
)+f(2)+f(
5
2
)+f(3)+f(
7
2
)
=
-2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2+a(a是常数).则x∈[2,4]时的解析式为(  )
A、f(x)=-x2+6x-8B、f(x)=x2-10x+24C、f(x)=x2-6x+8D、f(x)=x2-6x+8+a

查看答案和解析>>

同步练习册答案