精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=(a2-3a+3)ax是指数函数,则当x∈[-1,2]时,此函数的值域是(  )
A.[-2,4]B.[$\frac{1}{2}$,4]C.[-2,0)D.(-2,4]

分析 函数f(x)=(a2-3a+3)ax是指数函数,可得$\left\{\begin{array}{l}{{a}^{2}-3a+3=1}\\{a>0,且a≠1}\end{array}\right.$,解得a.再利用指数函数的单调性即可得出.

解答 解:∵函数f(x)=(a2-3a+3)ax是指数函数,
∴$\left\{\begin{array}{l}{{a}^{2}-3a+3=1}\\{a>0,且a≠1}\end{array}\right.$,
解得a=2.
∴y=2x
则当x∈[-1,2]时,
∴2-1≤2x≤22
此函数的值域是$[\frac{1}{2},4]$.
故选:B.

点评 本题考查了指数函数的定义单调性值域,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知a,b是异面直线,A,B∈a,C,D∈b,AC⊥b,BD⊥b,且AB=2,CD=1,则a,b所成角的大小是60°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{a}$•$\overrightarrow{b}$=10,|$\overrightarrow{a}$+$\overrightarrow{b}$|=5$\sqrt{2}$,则|$\overrightarrow{b}$|=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知曲线C是C1上半圆:x2+y2=m2(y≥0,m>0)与部分圆C2:x2+(y+1)2=n2(y≤0,n<0)连接而成的,C1,C2交于x轴上的公共点为A,B(A在B的左侧),曲线C与y轴交于D、E两点,若|DE|=2+$\sqrt{2}$.
(1)求m、n的值:
(2)过B作直线MN与C1,C2交于和A,B不同的两点M,N,问是否存在M、N,使AM⊥AN?若存在,求出直线MN方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x∈{0,2,x2),则实数x的值为(  )
A.1B.2C.0或1或2D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x+l)的定义域为(1,+∞),则f(1-x)的定义域为(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若f(x)是奇函数,且在(0,+∞)上是增函数,又f(-3)=0,则f(x)<0的解是(  )
A.(-3,0)∪(1,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.不等式(x-2)(3-x)>0的解集是(  )
A.(-∞,2)B.(3,+∞)C.(2,3)D.(-∞,2)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若数列{an}为无穷等比数列,且$\underset{lim}{n→∞}$(a1+a2+a3+…+an)=$\frac{1}{7}$,则a1的取值范围是{x|$0<x<\frac{2}{7}$,且$x≠\frac{1}{7}$}.

查看答案和解析>>

同步练习册答案