·ÖÎö £¨1£©ÓÉÓÚ¶ÔÈÎÒâµÄn¡ÊN£¬Sn=$\sqrt{{{a}_{1}}^{3}+{{a}_{2}}^{3}+¡+{{a}_{n}}^{3}}$£®¿ÉµÃ${S}_{n}^{2}$=${a}_{1}^{3}+{a}_{2}^{3}+¡+{a}_{n}^{3}$£®·Ö±ðÁîn=1£¬2£¬3£¬ÁªÁ¢½â³ö¼´¿É£®
£¨2£©ÓÉ£¨1£©²ÂÏëan=n£®ÀûÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷¼´¿É£®
£¨3£©bn=$\frac{2n+1}{{n}^{2}•£¨n+1£©^{2}}$=$\frac{1}{{n}^{2}}-\frac{1}{£¨n+1£©^{2}}$£¬ÀûÓá°ÁÑÏîÇóºÍ¡±¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©¡ß¶ÔÈÎÒâµÄn¡ÊN£¬Sn=$\sqrt{{{a}_{1}}^{3}+{{a}_{2}}^{3}+¡+{{a}_{n}}^{3}}$£®¡à${S}_{n}^{2}$=${a}_{1}^{3}+{a}_{2}^{3}+¡+{a}_{n}^{3}$£®
¡à·Ö±ðÁîn=1£¬2£¬3£¬¿ÉµÃ£º$\left\{\begin{array}{l}{{a}_{1}^{2}={a}_{1}^{3}}\\{£¨{a}_{1}+{a}_{2}£©^{2}={a}_{1}^{3}+{a}_{2}^{3}}\\{£¨{a}_{1}+{a}_{2}+{a}_{3}£©^{2}={a}_{1}^{3}+{a}_{2}^{3}+{a}_{3}^{3}}\end{array}\right.$£¬an£¾0£¬£¨?n¡ÊN*£©½âµÃa1=1£¬a2=2£¬a3=3£®
£¨2£©ÓÉ£¨1£©²ÂÏëan=n£®
ÏÂÃæÀûÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º
£¨i£©µ±n=1ʱ£¬a1=1³ÉÁ¢£»
£¨ii£©¼ÙÉèµ±n=kʱ£¬ak=k£¨k¡ÊN*£©³ÉÁ¢£¬Sk=$\frac{k£¨k+1£©}{2}$£®
Ôòµ±n=k+1ʱ£¬¡ß${S}_{k+1}^{2}$=${a}_{1}^{3}$+${a}_{2}^{3}$+¡+${a}_{k}^{3}$+${a}_{k+1}^{3}$=${S}_{k}^{2}$+${a}_{k+1}^{3}$£®
¡à$£¨{S}_{k}+{a}_{k+1}£©^{2}$=${S}_{k}^{2}$+${a}_{k+1}^{3}$£®
»¯Îª2¡Á$\frac{k£¨k+1£©}{2}$ak+1+${a}_{k+1}^{2}$=${a}_{k+1}^{3}$£¾0£®
¡à${a}_{k+1}^{2}$-ak+1-k£¨k+1£©=0£¬
½âµÃak+1=k+1£®
¡àµ±n=k+1ʱ£¬ak+1=k+1£¬½áÂÛ³ÉÁ¢£®
×ÛÉϿɵãº?n¡ÊN*£¬ak=k³ÉÁ¢£®
£¨3£©bn=$\frac{2n+1}{{a}_{n}^{2}•{a}_{n+1}^{2}}$=$\frac{2n+1}{{n}^{2}•£¨n+1£©^{2}}$=$\frac{1}{{n}^{2}}-\frac{1}{£¨n+1£©^{2}}$£¬
¡àÊýÁÐ{bn}Ç°nÏîºÍTn=$£¨\frac{1}{{1}^{2}}-\frac{1}{{2}^{2}}£©$+$£¨\frac{1}{{2}^{2}}-\frac{1}{{3}^{2}}£©$+¡+$[\frac{1}{{n}^{2}}-\frac{1}{£¨n+1£©^{2}}]$
=1-$\frac{1}{£¨n+1£©^{2}}$
=$\frac{{n}^{2}+2n}{£¨n+1£©^{2}}$£®
µãÆÀ ±¾Ì⿼²éÁ˵ÝÍÆʽµÄÓ¦ÓᢵȲîÊýÁеÄͨÏʽ¼°Ç°nÏîºÍ¹«Ê½¡¢Êýѧ¹éÄÉ·¨¡¢¡°ÁÑÏîÇóºÍ¡±£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | -3 | B£® | 2 | C£® | 3 | D£® | -2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\left\{\begin{array}{l}{{x}^{2}£¬x£¾0}\\{-{x}^{2}£¬x£¼0}\end{array}\right.$ | B£® | $\left\{\begin{array}{l}{-{x}^{2}£¬x£¾0}\\{{x}^{2}£¬x£¼0}\end{array}\right.$ | ||
C£® | $\left\{\begin{array}{l}{-x£¬x£¾0}\\{{x}^{2}£¬x£¼0}\end{array}\right.$ | D£® | $\left\{\begin{array}{l}{-x£¬x£¼0}\\{{x}^{2}£¬x£¾0}\end{array}\right.$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com