11£®ÒÑÖªÕýÏîÊýÁÐ{an}Ç°nÏîºÍΪSn£¬ÇÒ¶ÔÈÎÒâµÄn¡ÊN£¬Sn=$\sqrt{{{a}_{1}}^{3}+{{a}_{2}}^{3}+¡­+{{a}_{n}}^{3}}$£®
£¨1£©Çóa1£¬a2£¬a3 µÄÖµ£®
£¨2£©²ÂÏëÊýÁÐ{an}µÄͨÏʽ²¢ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£»
£¨3£©Éèbn=$\frac{2n+1}{{a}_{n}^{2}•{a}_{n+1}^{2}}$£¬ÊýÁÐ{bn}Ç°nÏîºÍTn£®

·ÖÎö £¨1£©ÓÉÓÚ¶ÔÈÎÒâµÄn¡ÊN£¬Sn=$\sqrt{{{a}_{1}}^{3}+{{a}_{2}}^{3}+¡­+{{a}_{n}}^{3}}$£®¿ÉµÃ${S}_{n}^{2}$=${a}_{1}^{3}+{a}_{2}^{3}+¡­+{a}_{n}^{3}$£®·Ö±ðÁîn=1£¬2£¬3£¬ÁªÁ¢½â³ö¼´¿É£®
£¨2£©ÓÉ£¨1£©²ÂÏëan=n£®ÀûÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷¼´¿É£®
£¨3£©bn=$\frac{2n+1}{{n}^{2}•£¨n+1£©^{2}}$=$\frac{1}{{n}^{2}}-\frac{1}{£¨n+1£©^{2}}$£¬ÀûÓá°ÁÑÏîÇóºÍ¡±¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©¡ß¶ÔÈÎÒâµÄn¡ÊN£¬Sn=$\sqrt{{{a}_{1}}^{3}+{{a}_{2}}^{3}+¡­+{{a}_{n}}^{3}}$£®¡à${S}_{n}^{2}$=${a}_{1}^{3}+{a}_{2}^{3}+¡­+{a}_{n}^{3}$£®

¡à·Ö±ðÁîn=1£¬2£¬3£¬¿ÉµÃ£º$\left\{\begin{array}{l}{{a}_{1}^{2}={a}_{1}^{3}}\\{£¨{a}_{1}+{a}_{2}£©^{2}={a}_{1}^{3}+{a}_{2}^{3}}\\{£¨{a}_{1}+{a}_{2}+{a}_{3}£©^{2}={a}_{1}^{3}+{a}_{2}^{3}+{a}_{3}^{3}}\end{array}\right.$£¬an£¾0£¬£¨?n¡ÊN*£©½âµÃa1=1£¬a2=2£¬a3=3£®
£¨2£©ÓÉ£¨1£©²ÂÏëan=n£®
ÏÂÃæÀûÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º
£¨i£©µ±n=1ʱ£¬a1=1³ÉÁ¢£»
£¨ii£©¼ÙÉèµ±n=kʱ£¬ak=k£¨k¡ÊN*£©³ÉÁ¢£¬Sk=$\frac{k£¨k+1£©}{2}$£®
Ôòµ±n=k+1ʱ£¬¡ß${S}_{k+1}^{2}$=${a}_{1}^{3}$+${a}_{2}^{3}$+¡­+${a}_{k}^{3}$+${a}_{k+1}^{3}$=${S}_{k}^{2}$+${a}_{k+1}^{3}$£®
¡à$£¨{S}_{k}+{a}_{k+1}£©^{2}$=${S}_{k}^{2}$+${a}_{k+1}^{3}$£®
»¯Îª2¡Á$\frac{k£¨k+1£©}{2}$ak+1+${a}_{k+1}^{2}$=${a}_{k+1}^{3}$£¾0£®
¡à${a}_{k+1}^{2}$-ak+1-k£¨k+1£©=0£¬
½âµÃak+1=k+1£®
¡àµ±n=k+1ʱ£¬ak+1=k+1£¬½áÂÛ³ÉÁ¢£®
×ÛÉϿɵãº?n¡ÊN*£¬ak=k³ÉÁ¢£®
£¨3£©bn=$\frac{2n+1}{{a}_{n}^{2}•{a}_{n+1}^{2}}$=$\frac{2n+1}{{n}^{2}•£¨n+1£©^{2}}$=$\frac{1}{{n}^{2}}-\frac{1}{£¨n+1£©^{2}}$£¬
¡àÊýÁÐ{bn}Ç°nÏîºÍTn=$£¨\frac{1}{{1}^{2}}-\frac{1}{{2}^{2}}£©$+$£¨\frac{1}{{2}^{2}}-\frac{1}{{3}^{2}}£©$+¡­+$[\frac{1}{{n}^{2}}-\frac{1}{£¨n+1£©^{2}}]$
=1-$\frac{1}{£¨n+1£©^{2}}$
=$\frac{{n}^{2}+2n}{£¨n+1£©^{2}}$£®

µãÆÀ ±¾Ì⿼²éÁ˵ÝÍÆʽµÄÓ¦ÓᢵȲîÊýÁеÄͨÏʽ¼°Ç°nÏîºÍ¹«Ê½¡¢Êýѧ¹éÄÉ·¨¡¢¡°ÁÑÏîÇóºÍ¡±£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÅжÏÏÂÁи÷ÌâÖеÄÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$ÊÇ·ñ¹²Ïߣº
£¨1£©$\overrightarrow{a}$=4$\overrightarrow{{e}_{1}}$-$\frac{2}{5}$$\overrightarrow{{e}_{2}}$£¬$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}$Ò»$\frac{1}{10}$$\overrightarrow{{e}_{2}}$£»
£¨2£©$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$£¬$\overrightarrow{b}$=2$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$£¬ÇÒ$\overrightarrow{{e}_{1}}$£¬$\overrightarrow{{e}_{2}}$¹²Ïߣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªf£¨x£©=ax3-6x2+b£¨a¡Ù0£©£¬ÔÚ[1£¬2]Éϵ¥µ÷µÝÔö£¬ÇÒ×î´óֵΪ1£®
£¨1£©ÇóʵÊýaºÍbµÄÈ¡Öµ·¶Î§£»
£¨2£©µ±aÈ¡×îСֵʱ£¬ÊÔÅжϷ½³Ìf£¨x£©=24xµÄ¸ùµÄ¸öÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=1£¬an+1=an+2£¨n¡ÊN*£©£¬Ôò$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+¡­+$\frac{1}{{a}_{n-1}{a}_{n}}$=$\frac{n-1}{2n-1}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=loga$\frac{x-5}{x+5}$£¨a£¾0ÇÒa¡Ù1£©£¬Éèg£¨x£©=loga£¨x-3£©£¬Èô·½³Ìf£¨x£©-1=g£¨x£©ÓÐʵ¸ù£¬ÔòaµÄÈ¡Öµ·¶Î§ÊÇ£¨0£¬$\frac{3-\sqrt{5}}{16}$]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{2}$x2+lnx+£¨1-b£©x+a£¬ÇÒf£¨x£©µÄͼÏó¹ýµã£¨1£¬$\frac{3}{2}$-b£©£®
£¨1£©Èôº¯Êýf£¨x£©´æÔÚµ¥µ÷µÝ¼õÇø¼ä£¬ÇóʵÊýbµÄÈ¡Öµ·¶Î§£»
£¨2£©Éèx1£¬x2£¨x1£¼x2£©ÊǺ¯Êýf£¨x£©µÄÁ½¸ö¼«Öµµã£¬Èôb¡Ý$\frac{7}{2}$£¬Çóf£¨x1£©-f£¨x2£©µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Ö±Ïßy=kx+1ÓëÇúÏßy=ax3+lnx+bÏàÇÐÓڵ㣨1£¬5£©£¬Ôòa-b=£¨¡¡¡¡£©
A£®-3B£®2C£®3D£®-2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªf£¨x£©=$\left\{\begin{array}{l}{-x£¬x£¾0}\\{{x}^{2}£¬x£¼0}\end{array}\right.$£¬Ôòf[f£¨x£©]=£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}{{x}^{2}£¬x£¾0}\\{-{x}^{2}£¬x£¼0}\end{array}\right.$B£®$\left\{\begin{array}{l}{-{x}^{2}£¬x£¾0}\\{{x}^{2}£¬x£¼0}\end{array}\right.$
C£®$\left\{\begin{array}{l}{-x£¬x£¾0}\\{{x}^{2}£¬x£¼0}\end{array}\right.$D£®$\left\{\begin{array}{l}{-x£¬x£¼0}\\{{x}^{2}£¬x£¾0}\end{array}\right.$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÔÚ²»µÈ±ß¡÷ABCÖУ¬aÊÇ×±ß£¬Èôa2£¼b2+c2£¬ÔòAµÄÈ¡Öµ·¶Î§60¡ã£¼A£¼90¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸