精英家教网 > 高中数学 > 题目详情

【题目】某科研机构研发了某种高新科技产品,现已进入实验阶段.已知实验的启动资金为10万元,从实验的第一天起连续实验,第天的实验需投入实验费用为,实验30天共投入实验费用17700元.

(1)求的值及平均每天耗资最少时实验的天数;

(2)现有某知名企业对该项实验进行赞助,实验天共赞助.为了保证产品质量,至少需进行50天实验,若要求在平均每天实际耗资最小时结束实验,求的取值范围.(实际耗资=启动资金+试验费用-赞助费)

【答案】(1);(2).

【解析】

试题分析:(1)实验开始后,每天的试验费用构成公差为,首项为的等差数列,通过等差数列的求和公式计算出这天所投入的试验费用,然后便可求出的值再利用等差数列的求和公式求出天内总计的试验费用,然后再求出每天的平均试验费用,利用基本不等式便可求出平均每天耗资最少时试验的天数(2)先求出实际耗资的连续函数,,讨论的大小关系即可解得的取值范围为

试题解析:(1)依题意得,试验开始后,每天的试验费用构成等差数列,公差为,首项为

试验30天共花费试验费用为

解得,.............................2分

设试验天,平均每天耗资为元,则

..................4分

当且仅当,即时取等号,

综上得,,试验天数为100天..................................6分

(2)设平均每天实际耗资为元,则

...........8分

,即时,

,因为

所以,,.......................10分

,即时,当时,取最小值,

综上得,的取值范围为....................12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知关于x的一元二次函数,分别从集合P和Q中随机取一个数a和b得到数对

(1)若,求函数内是偶函数的概率;

(2)若,求函数有零点的概率;

(3)若,求函数在区间上是增函数的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是椭圆的左顶点、右焦点,点为椭圆上一动点,当轴时, .

(1)求椭圆的离心率;

(2)若椭圆存在点,使得四边形是平行四边形(点在第一象限),求直线的斜率之积;

(3)记圆为椭圆的“关联圆”. 若,过点作椭圆的“关联圆”的两条切线,切点为,直线的横、纵截距分别为,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c为△ABC的三个内角A,B,C的对边,向量=( , ﹣1),=(cosA,sinA).若 , 且αcosB+bcosA=csinC,则角A,B的大小分别为(  )
A.,
B.,
C.,
D.,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面四边形ABCD中,△BCD是正三角形,AB=AD=1,∠BAD=θ.
(Ⅰ)将四边形ABCD的面积S表示成关于θ的函数;
(Ⅱ)求S的最大值及此时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知函数(其中为自然对数的底数, ).

(1)当时,求的单调区间;

(2)若仅有一个极值点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,则当时,讨论单调性;

(2)若,且当时,不等式在区间上有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列为等比数列, ,公比,且成等差数列.

1求数列的通项公式;

2 ,求使的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分,1小问7分,2小问5分

设函数

1处取得极值,确定的值,并求此时曲线在点处的切线方程;

2上为减函数,求的取值范围。

查看答案和解析>>

同步练习册答案