精英家教网 > 高中数学 > 题目详情

【题目】一根水平放置的长方体形枕木的安全负荷与它的宽度成正比,与它的厚度的平方成正比,与它的长度的平方成反比.

(Ⅰ)将此枕木翻转90°(即宽度变为厚度),枕木的安全负荷会如何变化?为什么?(设翻转前后枕木的安全负荷分别为且翻转前后的比例系数相同都为

(Ⅱ)现有一根横断面为半圆(已知半圆的半径为)的木材,用它来截取成长方体形的枕木,其长度为10,问截取枕木的厚度为多少时,可使安全负荷最大?

【答案】(Ⅰ) 见解析 (Ⅱ)

【解析】试题分析:(1)安全负荷为正常数),翻转从而得,从而讨论变化;(2)如图,设截取的宽为,厚度为,则,即,从而得到,再求导,确定函数的单调性与最值.

试题解析:(Ⅰ)安全负荷为正常数)翻转

时,安全负荷变大.

,安全负荷变小;

时,安全负荷不变.

(II)如图,设截取的宽为,厚度为,则.

=

得:

函数上为增函数;

函数上为减函数;

时,安全负荷最大。此时厚度

答:当问截取枕木的厚度为时,可使安全负荷最大。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知分别是椭圆 的左、右焦点,点是椭圆上一点,且.

(1)求椭圆的方程;

(2)设直线与椭圆相交于两点,若,其中为坐标原点,判断到直线的距离是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某几何体的三视图,则该几何体的体积为( )

A. 12 B. 15 C. 18 D. 21

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,椭圆 的离心率为,过椭圆右焦点作两条互相垂直的弦,当其中一条弦所在直线斜率为0时,两弦长之和为6.

(1)求椭圆的方程;

(2)是抛物线 上两点,且处的切线相互垂直,直线与椭圆相交于两点,求弦的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解青少年的肥胖是否与常喝碳酸饮料有关,现对30名青少年进行调查,得到如下列联表:

不常喝

2

不肥胖

18

30

已知从这30名青少年中随机抽取1名,抽到肥胖青少年的概率为

(1)请将列联表补充完整;(2)是否有99.5%的把握认为青少年的肥胖与常喝碳酸饮料有关?

独立性检验临界值表:

P(K2k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中n=a+b+c+d

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1) 判断并证明f(x)在定义域内的单调性;

(2)证明:当x>-1时,

(3)设当x≥0时, ,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数, 是自然对数的底数),曲线在点处的切线方程是.

(1)求的值;(2)求的单调区间;

(3)设(其中的导函数)。证明:对任意

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分) 设函数

1)当时,求函数的单调区间;

2)令,其图像上任意一点P处切线的斜率恒成立,求实数的取值范围;

3)当时,方程在区间内有唯一实数解,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知三棱柱中,

(1)求证:

(2)若 ,求二面角的余弦值.

查看答案和解析>>

同步练习册答案