精英家教网 > 高中数学 > 题目详情

已知函数
(Ⅰ)若函数在区间上存在极值,求实数的取值范围;
(Ⅱ)如果当时,不等式恒成立,求实数的取值范围.

(Ⅰ);(Ⅱ)

解析试题分析:(Ⅰ)先对函数求导,求出函数的极值,根据函数在区间上存在极值,
所以 从而解得(Ⅱ)不等式恒成立问题转化为求函数的最值问题.
试题解析:
解:(Ⅰ)因为,则,          (2分)
时,;当时,.
所以上单调递增;在上单调递减,
所以函数处取得极大值.                (4分)
因为函数在区间上存在极值,
所以 解得                  (6分)
(Ⅱ)不等式即为 记
所以,        (9分)
,则

上单调递增,
,从而
上也单调递增,所以
所以.                         (12分)
考点:函数与导数,函数极值与最值,不等式恒成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某校内有一块以为圆心,为常数,单位为米)为半径的半圆形(如图)荒地,该校总务处计划对其开发利用,其中弓形区域(阴影部分)用于种植学校观赏植物,区域用于种植花卉出售,其余区域用于种植草皮出售.已知种植学校观赏植物的成本是每平方米20元,种植花卉的利润是每平方米80元,种植草皮的利润是每平方米30元.

(1)设(单位:弧度),用表示弓形的面积
(2)如果该校总务处邀请你规划这块土地,如何设计的大小才能使总利润最大?并求出该最大值.
(参考公式:扇形面积公式表示扇形的弧长)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)设,试讨论单调性;
(2)设,当时,若,存在,使,求实数
取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,若在点处的切线斜率为
(Ⅰ)用表示
(Ⅱ)设,若对定义域内的恒成立,
(ⅰ)求实数的取值范围;
(ⅱ)对任意的,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)若是函数的极值点,求实数的值;
(2)若对任意的为自然对数的底数)都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)当时,讨论函数在[上的单调性;
(Ⅱ)如果是函数的两个零点,为函数的导数,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)若,求的单调区间,
(2)当时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已函数是定义在上的奇函数,在.
(1)求函数的解析式;并判断上的单调性(不要求证明);
(2)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数)的图象在处的切线与轴平行.
(1)确定实数的正、负号;
(2)若函数在区间上有最大值为,求的值.

查看答案和解析>>

同步练习册答案