精英家教网 > 高中数学 > 题目详情

已知Sn是等比数列{an}的前n项和,数学公式数学公式
(I)求an
(II)若数学公式,求数列{bn}的前n项和Tn

解:(I)若q=1,则S6=2S3,这与已知矛盾,所以q≠1,(1分)
②(3分)
②式除以①式,得,所以
代入①得a1=2,
所以.(7分)

(II)因为,(9分)
所以Tn=(2-1+20+21++2n-2)+(1+2+3++n)=(12分)
==.(14分)
分析:(I)由题意可得,公比q≠1,则②,相除可得公比q,求得首项和公比,即可求出通项公式.
(II)首先根据(1)求出数列{bn}的通项公式,然后利用分组法求出前n项和.
点评:本题考查等比数列的前n项和公式和通项公式,(2)问中数列{bn}是等差数列和等比数列和的形式,采取分组法求解.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知Sn是等比数列{an}的前n项和,a5=-2,a8=16,等S6等于(  )
A、
21
8
B、-
21
8
C、
17
8
D、-
17
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)叙述并证明等比数列的前n项和公式;
(2)已知Sn是等比数列{an} 的前n项和,S3,S9,S6成等差数列,求证:a1+k,a7+k,a4+k(k∈N)成等差数列;
(3)已知Sn是正项等比数列{an} 的前n项和,公比0<q≤1,求证:2Sn+1≥Sn+Sn+2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是等比数列{an}的前n项和,其公比为q,若S3、S9、S6成等差数列.求
(1)q3的值;
(2)求证:a3、a9、a6也成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是等比数列{an}的前n项和,若S3,S9,S6成等差数列,则也成等差数列的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是等比数列{an}的前n项和,an∈N+,a2=30,a1S3=999.
(Ⅰ)求an和;
(Ⅱ)设Sn各位上的数字之和为bn,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案