精英家教网 > 高中数学 > 题目详情
4.已知不等式ax2+bx+2>0的解集为{x|-$\frac{1}{2}$<x<$\frac{1}{3}$},则a=-12,b=-2.

分析 ax2+bx+2>0的解集为{x|-$\frac{1}{2}$<x<$\frac{1}{3}$},可得a<0,且-$\frac{1}{2}$,$\frac{1}{3}$是一元二次方程ax2+bx+2=0的实数根,利用根与系数的关系即可得出.

解答 解:∵ax2+bx+2>0的解集为{x|-$\frac{1}{2}$<x<$\frac{1}{3}$},
∴a<0,且-$\frac{1}{2}$,$\frac{1}{3}$是一元二次方程ax2+bx+2=0的实数根,
∴$\left\{\begin{array}{l}{-\frac{1}{2}+\frac{1}{3}=-\frac{b}{a}}\\{-\frac{1}{2}×\frac{1}{3}=\frac{2}{a}}\end{array}\right.$,且a<0,
解得a=-12,b=-2.
故答案为:-12;-2.

点评 本题考查了一元二次不等式的解法、一元二次方程的根与系数的关系,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知点pn(an,bn)(n∈N+)在直线l:y=3x+1上,p1是直线l与y轴的交点,数列{an}是公差为1的等差数列.求数列{an},{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.对于二元函数有如下定义:对于平面点集D,若按照某种对应法则f使得D中的每一点P(x,y)都有唯一的实数z与之对应,则称f为在D上的二元函数.D称为二元函数的定义域,全体函数值构成的集合称为二元函数的值域,使得f(x,y)=0成立的实数对(x,y)称为二元函数的“上升点”,若二元函数f(x,y)=3+sin[π+(2x+$\frac{1}{2}$)]-$\frac{2{x}^{2}+16xy+32{y}^{2}+2}{x+4y}$,(x,y)∈D1存在“上升点”,则二元函数h(x,y)=(x+4)2+(y+3)2,(x,y)∈D1的最小值为(  )
A.$\sqrt{13}$B.17C.$\frac{53}{4}$D.$\frac{\sqrt{53}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.指数函数y=ax(a>0且a≠1)的图象经过点(  )
A.(0,0)B.(0,1)C.(1,1)D.(-1,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设f(x)=excos2x,求f′(x),并写出在点(0,1)处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.曲线y=xsinx在点(-$\frac{π}{2}$,$\frac{π}{2}$)处切线与x轴及直线x=π所围成三角形面积为$\frac{1}{2}{π}^{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.过原点作直线l的垂线,垂足为M(3,-4),则直线l的方程为3x-4y-25=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知在△ABC中,b=2c,角A的平分线长m,m=kc,则k的取值范围是k∈(0,$\frac{4}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若x-y=2,x2+y2=4,则x2008+y2008=22008

查看答案和解析>>

同步练习册答案