精英家教网 > 高中数学 > 题目详情

【题目】已知集合A={a|一次函数y=(4a﹣1)x+b在R上是增函数},集合B=
(1)求集合A,B;
(2)设集合 ,求函数f(x)=x﹣ 在A∩C上的值域.

【答案】
(1)解:∵集合A={a|一次函数y=(4a﹣1)x+b在R上是增函数},

∴4a﹣1>0,解得:a>

得:

当0<a<1时,loga <1=logaa,解得:0<a<

当a>1时,loga <1=logaa,解得:a> ,而a>1,故a>1,


(2)解:

∵函数y=x在(0,+∞)是增函数,

在(0,+∞)上是减函数,

在(0,+∞)是增函数

所以当

即函数 的值域是


【解析】(1)根据一次函数的性质求出集合A,根据对数函数的性质求出集合B即可;(2)求出A∩B,结合f(x)的单调性求出f(x)的值域即可.
【考点精析】掌握函数单调性的判断方法是解答本题的根本,需要知道单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,△ABC为正三角形,AB⊥AD,AC⊥CD,PA⊥平面ABCD,PC与平面ABCD所成角为45°
(1)若E为PC的中点,求证:PD⊥平面ABE;
(2)若CD= ,求点B到平面PCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=logax(a>0且a≠1)的图象经过点 ,函数y=bx(b>0且b≠1)的图象经过点 ,则下列关系式中正确的是(
A.a2>b2
B.2a>2b
C.
D.(a >b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)在定义域内存在实数x0 , 使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)有“飘移点”x0 . (Ⅰ)证明f(x)=x2+ex在区间 上有“飘移点”(e为自然对数的底数);
(Ⅱ)若 在区间(0,+∞)上有“飘移点”,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】到空间不共面的四点距离相等的平面的个数为(
A.1个
B.4个
C.7个
D.8个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是圆O的直径,PA垂直圆所在的平面,C是圆上的点.
(I)求证:平面PAC⊥平面PBC;
(II)若AC=1,PA=1,求圆心O到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长为4的菱形ABCD中,∠DAB=60°.点E、F分别在边CD、CB上,点E与点C、D不重合,EF⊥AC,EF∩AC=O.沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.
(1)求证:BD⊥平面POA;
(2)设点Q满足 ,试探究:当PB取得最小值时,直线OQ与平面PBD所成角的大小是否一定大于 ?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆方程为 =1(a>0,b>0),其右焦点为F(4,0),过点F的直线交椭圆与A,B两点.若AB的中点坐标为(1,﹣1),则椭圆的方程为(
A. =1
B. =1
C. + =1
D. =1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p: <1,q:x2+(a﹣1)x﹣a>0,若p是q的充分不必要条件,则实数a的取值范围是(
A.(﹣2,﹣1]
B.[﹣2,﹣1]
C.[﹣3,﹣1]
D.[﹣2,+∞)

查看答案和解析>>

同步练习册答案