精英家教网 > 高中数学 > 题目详情

已知圆心为的圆经过点.
(1)求圆的标准方程;
(2)若直线过点且被圆截得的线段长为,求直线的方程;
(3)是否存在斜率是1的直线,使得以被圆所截得的弦EF为直径的圆经过
原点?若存在,试求出直线的方程;若不存在,请说明理由.

(1);(2);(3)不存在.

解析试题分析:(1)用两点的距离公式求出圆的半径,就可写出圆的标准方程;(2)法一:由圆的弦长可求得圆心到直线的距离,再用点斜式设出所求直线的方程,应用待定系数法:由点到直线的距离公式,就可求出所求直线的斜率,从而就可求得所求的直线方程,只是一定要注意:斜率不存在情形的讨论;法二:设出直线的斜率,写出直线方程,与圆方程联立,消去y得到关于x的一元二次方程,应用韦达定理及弦长公式,就可用斜率的代数式将弦长表示出来,从而获得关于斜率的方程解之即得;一样也需考虑斜率不存在情形;(3)法一:假设所求直线存在,先用斜截式设出其方程,并用m的式子表示出弦EF的中点坐标,再画出图形,由以弦EF为直径的圆经过原点知,再作勾股定理即可获得关于m的方程,解此方程,有解则存在,并可写出对应直线方程,无解则不存在;法二:将直线方程与圆方程联立,消元,再用韦达定理,将条件应用向量知识转化为,然后将韦达定理的结论代入即可获得关于m的方程,解此方程,有解则存在,并可写出对应直线方程,无解则不存在.
试题解析:(1)圆的半径为,        1分
∴圆的标准方程为.            3分
(2)方法一 如图所示,设直线与圆交于两点,且的中点,则

∵圆的半径为4,即
∴在中,可得,即点到直线的距离为2.           4分
(i)当所求直线的斜率存在时,设所求直线的方程为,即.           5分
由点到直线的距离公式得:=2,解得.
∴此时直线的方程为.            7分
(ii)当直线的斜率不存在时,直线的方程为.
代入
,,
∴方程为的直线也满足题意.
∴所求直线的方程为.         8分
方法二:当所求直线的斜率存在时,设所求直线的方程为,即.---4分
联立直线与圆的方程:,          5分
消去      ①
设方程①的两根为,
由根与系数的关系得        ②
由弦长公式得|x1-x2|==4   ③
将②式代入③,并解得
此时直线

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知圆关于直线对称,圆心在第二象限,半径为
(1)求圆的方程;
(2)是否存在直线与圆相切,且在轴、轴上的截距相等?若存在,求直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C过点P(1,1),且与圆M:(x+2)2+(x+2)2=r2(r>0)2关于直线x+y+2=0对称.
⑴求圆C的方程;
⑵设Q为圆C上的一个动点,求的最小值;
⑶过点P作两条相异直线分别与圆C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C过原点且与相切,且圆心C在直线上.
(1)求圆的方程;(2)过点的直线l与圆C相交于A,B两点, 且, 求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知以点P为圆心的圆经过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=4.
(1)求直线CD的方程;
(2)求圆P的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点是直线上一动点,是圆C:的两条切线,A、B是切点,若四边形的最小面积是2,则的值为?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,以O为圆心的圆与直线相切.
(1)求圆O的方程;
(2)圆O与轴相交于两点,圆内的动点满足
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知以点C(t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.
(1)求证:△AOB的面积为定值;
(2)设直线2x+y-4=0与圆C交于点M、N,若|OM|=|ON|,求圆C的方程;
(3)在(2)的条件下,设P、Q分别是直线l:x+y+2=0和圆C的动点,求|PB|+|PQ|的最小值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

经过圆的圆心,且与直线垂直的直线方程是              

查看答案和解析>>

同步练习册答案