【题目】已知函数, R.
(1)证明:当时,函数是减函数;
(2)根据的不同取值,讨论函数的奇偶性,并说明理由;
(3)当,且时,证明:对任意,存在唯一的R,使得,且.
【答案】(1)见解析(2) 当时,函数是奇函数;当时,函数是偶函数;当且时,函数是非奇非偶函数,(3)见解析
【解析】试题分析:
(1)任取,设,计算可得,据此可得,函数是减函数.
(2)分类讨论可得:当时,函数是偶函数,当时函数是奇函数,当且时,函数是非奇非偶函数.
(3)由(1)知,当时函数是减函数,结合函数的单调性分别证明的存在性(利用函数的值域)和唯一性(利用反证法)即可证得题中的结论.
试题解析:
(1)任取,设,则,
∵,所以,又,∴,即,
所以当时,函数是减函数.
(2)当时, ,所以,所以函数是偶函数,
当时, , ,
所以函数是奇函数,
当且时, , ,
因为且,
所以函数是非奇非偶函数.
(3)由(1)知,当时函数是减函数,
所以函数在上的值域为,
因为,所以存在,使得.
假设存在使得,
若,则,若,则,
与矛盾,故是唯一的,
假设,即或,则或,
所以,与矛盾,故.
科目:高中数学 来源: 题型:
【题目】自治区有甲、乙两位航模运动员参加了国家队集训,现分别从他们在集训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲:82 81 79 78 95 88 93 84 乙:92 95 80 75 83 80 90 85
(I)画出甲、乙两位学生成绩的茎叶图,指出学生乙成绩中的位数;
(II)现要从中派一人参加国际比赛,从平均成绩和方差的角度考虑,你认为派哪位学生参加合适?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司欲生产一款迎春工艺品回馈消费者,工艺品的平面设计如图所示,该工艺品由直角和以为直径的半圆拼接而成,点为半圈上一点(异于,),点在线段上,且满足.已知,,设.
(1)为了使工艺礼品达到最佳观赏效果,需满足,且达到最大.当为何值时,工艺礼品达到最佳观赏效果;
(2)为了工艺礼品达到最佳稳定性便于收藏,需满足,且达到最大.当为何值时,取得最大值,并求该最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的左右焦点分别为F1,F2,点P 在椭圆上运动, 的最大值为m, 的最小值为n,且m≥2n,则该椭圆的离心率的取值范围为________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱中,AB=BC,D、E分别为的中点.
(1)证明:ED为异面直线BB1与AC1的公垂线段;
(2)设AB=1, ,求二面角A1—AD—C1的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点为抛物线内一定点,过作两条直线交抛物线于,且分别是线段的中点.
(1)当时,求△的面积的最小值;
(2)若且,证明:直线过定点,并求定点坐标。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com