精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线为参数,),其中,在以为极点,轴正半轴为极轴的极坐标系中,曲线,曲线.

(Ⅰ)求交点的直角坐标系;

(Ⅱ)若相交于点,相交于点,求的最大值.

【答案】(1)交点坐标为 .(2)最大值为

【解析】试题分析:(1)根据 将曲线的极坐标方程化为直角坐标方程,再联立方程组求解交点的直角坐标,(2)曲线为直线,倾斜角为,极坐标方程为,代入的极坐标方程可得的极坐标,则为对应极径之差的绝对值,即,最后根据三角函数关系有界性求最值.

试题解析:解:(Ⅰ)

联立得交点坐标为

(Ⅱ)曲线的极坐标方程为,其中

因此得到的极坐标为

的极坐为

所以

时, 取得最大值,最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,顺次连接椭圆的四个顶点得到的四边形的面积为16.

(Ⅰ)求椭圆的方程;

(Ⅱ)过椭圆的顶点的直线交椭圆于另一点,交轴于点,若成等比数列,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,短轴的两个端点分别为.

(Ⅰ)若为等边三角形,求椭圆的方程;

(Ⅱ)若椭圆的短轴长为,过点的直线与椭圆相交于两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U={x|x≤4},集合A={x|﹣2<x<3},B={x|﹣3≤x≤2},求A∩B,(UA)∪B,A∩(UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)满足f(0)=2和f(x+1)﹣f(x)=2x﹣1对任意实数x都成立.
(1)求函数f(x)的解析式;
(2)当t∈[﹣1,3]时,求y=f(2t)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,过的左焦点的直线,直线被圆截得的弦长为.

(Ⅰ)求椭圆的方程;

(Ⅱ)设的右焦点为,在圆上是否存在点,满足,若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中, 平面// 分别为

线段 的中点.

(Ⅰ)求证: //平面

(Ⅱ)求证: 平面

(Ⅲ)写出三棱锥与三棱锥的体积之比.(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=log 为奇函数,a为常数,
(1)求a的值;
(2)证明f(x)在区间(1,+∞)上单调递增;
(3)若x∈[3,4],不等式f(x)>( x+m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,离心率为.

(1)求椭圆的标准方程;

2)过椭圆的上顶点作直线交抛物线两点, 为原点.

①求证:

②设分别与椭圆相交于两点,过原点作直线的垂线,垂足为,证明: 为定值.

查看答案和解析>>

同步练习册答案