【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线(为参数,),其中,在以为极点,轴正半轴为极轴的极坐标系中,曲线,曲线.
(Ⅰ)求与交点的直角坐标系;
(Ⅱ)若与相交于点,与相交于点,求的最大值.
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的离心率为,顺次连接椭圆的四个顶点得到的四边形的面积为16.
(Ⅰ)求椭圆的方程;
(Ⅱ)过椭圆的顶点的直线交椭圆于另一点,交轴于点,若、、成等比数列,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点分别为,短轴的两个端点分别为.
(Ⅰ)若为等边三角形,求椭圆的方程;
(Ⅱ)若椭圆的短轴长为,过点的直线与椭圆相交于两点,且,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)满足f(0)=2和f(x+1)﹣f(x)=2x﹣1对任意实数x都成立.
(1)求函数f(x)的解析式;
(2)当t∈[﹣1,3]时,求y=f(2t)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,过的左焦点的直线,直线被圆:截得的弦长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设的右焦点为,在圆上是否存在点,满足,若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中, 平面, // , , , 分别为
线段, 的中点.
(Ⅰ)求证: //平面;
(Ⅱ)求证: 平面;
(Ⅲ)写出三棱锥与三棱锥的体积之比.(结论不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=log 为奇函数,a为常数,
(1)求a的值;
(2)证明f(x)在区间(1,+∞)上单调递增;
(3)若x∈[3,4],不等式f(x)>( )x+m恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆过点,离心率为.
(1)求椭圆的标准方程;
(2)过椭圆的上顶点作直线交抛物线于两点, 为原点.
①求证: ;
②设、分别与椭圆相交于、两点,过原点作直线的垂线,垂足为,证明: 为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com