精英家教网 > 高中数学 > 题目详情

【题目】如图,已知椭圆C的左、右顶点分别为右焦点为,右准线l的方程为,过焦点F的直线与椭圆C相交于点AB(不与点重合).

1)求椭圆C的标准方程;

2)当直线AB的倾斜角为45°时,求弦AB的长;

3)设直线l于点M,求证:BM三点共线.

【答案】123)见解析

【解析】

1)由题意结合椭圆性质可得,即可得解;

2)由题意直线,设,联立方程组可得,再利用弦长公式即可得解;

3)设直线,易得,转化结论为证明成立,联立方程组即可得,进而可得,即可得证.

1)设椭圆C的焦距为2c.由题意得

又右准线l的方程为,所以

所以

所以椭圆的标准方程为

2)设

因为直线的倾斜角为且过点

所以直线

联立,消去

所以

所以

3)由题意可得

因为直线AB的斜率不为0

所以设直线

则直线,令,得,所以

要证三点共线,只需证

即证,即证

联立,消去x

所以

所以

所以三点共线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录于下表中:


3

2

4




0

4


)求的标准方程;

)请问是否存在直线满足条件:的焦点交不同两点且满足?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人投篮的命中率各不相同,其中乙的命中率是甲的2倍,丙的命中率等于甲与乙的命中率之和.若甲与乙各投篮一次,每人投篮相互独立,则他们都命中的概率为0.18.

1)求甲、乙、丙三人投篮的命中率;

2)现要求甲、乙、丙三人各投篮一次,假设每人投篮相互独立,记三人命中总次数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,的顶点,且成等差数列.

1)求的顶点的轨迹方程;

2)直线与顶点的轨迹交于两点,当线段的中点落在直线上时,试问:线段的垂直平分线是否恒过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】跨年迎新联欢晚会简称跨年晚会,是指每年阳历年末1231日晚上各电视台和政府为喜迎新而精心策划的演唱会活动,跨年晚会首次出现在港台地区,跨年晚会因形式和举办地不同因而名称也不同,如央视启航2020跨年盛典,湖南卫视跨年演唱会,东方卫视迎新晚会等.某电视台为了了解2020年举办的跨年迎新晚会观众的满意度,现分别随机选出名观众对迎新晚会的质量评估评分,最高分为分,综合得分情况如下表所示:

综合得分

观众人数

5

10

25

30

15

10

5

根据表中的数据,回答下列问题:

1)根据表中的数据,绘制这位观众打分的频率分布直方图;

2)已知观众的评分近似服从,其中是反应随机变量取值的平均水平的特征数,工作人员在分析数据时发现,可用位观众评分的平均数估计,但由于评分观众人数较少,误差较大,所以不能直接用位观众评分的标准差的值估计,而在这位观众打分的频率分布直方图的基础上依据来估计更科学合理,试求的估计值(的结果精确到小数点后两位).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年,在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵(qian du);阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖膈(bie nao)指四个面均为直角三角形的四面体.如图在堑堵中,.给出下列四个结论:

①四棱锥为阳马;

②直线与平面所成角为

③当时,异面直线所成的角的余弦值为

④当三棱锥体积最大时,四棱锥的外接球的表面积为.

其中,所有正确结论的序号是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定合格”“不合格两个等级,同时对相应等级进行量化:合格5分,不合格0.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下:

等级

不合格

合格

得分

频数

6

a

24

b

1)由该题中频率分布直方图求测试成绩的平均数和中位数;

2)其他条件不变在评定等级为合格的学生中依次抽取2人进行座谈,每次抽取1人,求在第1次抽取的测试得分低于80分的前提下,第2次抽取的测试得分仍低于80分的概率;

3)用分层抽样的方法,从评定等级为合格不合格的学生中抽取10人进行座谈.现再从这10人中任选4人,记所选4人的量化总分为,求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为,曲线C的极坐标方程为

(Ⅰ)求直线l和曲线C的直角坐标方程;

(Ⅱ)点M为曲线C上一点,求M到直线l的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若恒成立,求a的值;

2)在(1)的条件下,若,证明:

3)若,证明:.

查看答案和解析>>

同步练习册答案