精英家教网 > 高中数学 > 题目详情

【题目】某县畜牧技术员张三和李四9年来一直对该县山羊养殖业的规模进行跟踪调查,张三提供了该县某山羊养殖场年养殖数量单位:万只与相应年份序号的数据表和散点图如图所示,根据散点图,发现y与x有较强的线性相关关系,李四提供了该县山羊养殖场的个数单位:个关于x的回归方程

年份序号x

1

2

3

4

5

6

7

8

9

年养殖山羊万只

根据表中的数据和所给统计量,求y关于x的线性回归方程参考统计量:

试估计:该县第一年养殖山羊多少万只

到第几年,该县山羊养殖的数量与第一年相比缩小了?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

【答案】(1)(2)①万只 ②第

【解析】

(1)根据公式得到a,b,和均值,进而得到方程;(2)第年山羊养殖的只数为x=1代入表达式结果;②列式得到,解出不等式可得到结果.

关于的线性回归方程为

.

所以关于的线性回归方程为.

估计第年山羊养殖的只数为

年山羊养殖的只数为

故该县第一年养殖山羊约万只.

由题意,得,整理得

解得(舍),

所以到第年该县山羊养殖的数量相比第年缩小了.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】ABC中,内角ABC所对的边分别为abc,且

1)求角A

2)若a2ABC的周长为6,求ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左、右焦点分别为F1F2,以线段F1F2为直径的圆与双曲线的渐近线在第一象限的交点为P,且P满足|PF1||PF2|2b,则C的离心率e满足(  )

A. e23e+10B. e43e2+10C. e2e10D. e4e210

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机构组织语文、数学学科能力竞赛,按照一定比例淘汰后,颁发一二三等奖.现有某考场的两科考试成绩数据统计如下图所示,其中数学科目成绩为二等奖的考生有人.

(Ⅰ)求该考场考生中语文成绩为一等奖的人数;

(Ⅱ)用随机抽样的方法从获得数学和语文二等奖的学生中各抽取人,进行综合素质测试,将他们的综合得分绘成茎叶图,求样本的平均数及方差并进行比较分析;

(Ⅲ)已知本考场的所有考生中,恰有人两科成绩均为一等奖,在至少一科成绩为一等奖的考生中,随机抽取人进行访谈,求两人两科成绩均为一等奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,椭圆的离心率为,焦点为,直线经过焦点,并与相交于两点.

(Ⅰ)求的方程;

(Ⅱ)在上是否存在两点,满足//?若存在,求直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下说法错误的是( )

A.复数满足,则复数在复平面上对应的点的轨迹为直线.

B.上连续可导的函数,若,则为极值点.

C.,则.

D.为抛物线的两点,为坐标原点,若,则直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)讨论函数的单调性;

2)证明:在区间上只有唯一的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间x与乘客等候人数y之间的关系,经过调查得到如下数据:

调查小组先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数y的差,若差值的绝对值不超过1,则称所求方程是“恰当回归方程”.

(1)若选取的是后面4组数据,求y关于x的线性回归方程,并判断此方程是否是“恰当回归方程”;

(2)为了使等候的乘客不超过35人,试用(1)中方程估计间隔时间最多可以设置为多少(精确到整数)分钟?

附:对于一组数据(x1,y1),(x2,y2),……,(xn,yn),其回归直线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,离心率等于,它的一个长轴端点恰好是抛物线的焦点.

1)求椭圆的标准方程;

2)已知)是椭圆上的两点,是椭圆上位于直线两侧的动点,且直线的斜率为.

①求四边形APBQ的面积的最大值;

②求证:.

查看答案和解析>>

同步练习册答案