精英家教网 > 高中数学 > 题目详情

【题目】为了解电视对生活的影响,一个社会调查机构就平均每天看电视的时间调查了某地10000位居民,并根据所得数据画出样本的频率分布直方图(如图),为了分析该地居民平均每天看电视的时间与年龄、学历、职业等方面的关系,要从这10000位居民中再用分层抽样抽出100位居民做进一步调查,则在(小时)时间段内应抽出的人数是(

A.25B.30C.50D.75

【答案】A

【解析】

计算区间小矩形的面积,现乘以10000,求出抽样比再乘以100.

抽出的100位居民中平均每天看电视的时间在(小时)时间段内的频率为:

,所以这10000位居民中平均每天看电视的时间在(小时)时间段内的人数是.

依题意知抽样比是则在(小时)时间段内应抽出的人数是:

.

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某小组为了研究昼夜温差对一种稻谷种子发芽情况的影响,他们分别记录了4月1日至4月5日的每天星夜温差与实验室每天每100颗种子的发芽数,得到如下资料:

日期

4月1日

4月2日

4月3日

4月4日

4月5日

温差

9

10

11

8

12

发芽数(颗)

38

30

24

41

17

利用散点图,可知线性相关。

(1)求出关于的线性回归方程,若4月6日星夜温差,请根据你求得的线性同归方程预测4月6日这一天实验室每100颗种子中发芽颗数;

(2)若从4月1日 4月5日的五组实验数据中选取2组数据,求这两组恰好是不相邻两天数据的概率.

(公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数:fx)=x2mxnm, nR).

1)若m+n0,解关于x的不等式fxx(结果用含m式子表示);

2)若存在实数m,使得当x[12]时,不等式xfx≤4x恒成立,求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点的坐标分别为,直线相交于点,且它们的斜率之积是.

(1)求点的轨迹的方程;

(2)直线与曲线相交于两点,若是否存在实数,使得的面积为?若存在,请求出的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的极值;

(2)若 是方程)的两个不同的实数根,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为增强市民节能环保意识,某市面向全市征召义务宣传志愿者,现从符合条件的500名志愿者中随机抽取100名志愿者,他们的年龄情况如下表所示:

分组(单位:岁)

频数

频率

5

0.05

0.20

35

30

0.30

10

0.10

总计

100

1.00

1)频率分布表中的①②位置应填什么数据?

2)补全如图所示的频率分布直方图,再根据频率分布直方图估计这500名志愿者中年龄在岁的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在全国第五个“扶贫日”到来之前,某省开展“精准扶贫,携手同行”的主题活动,某贫困县调查基层干部走访贫困户数量.镇有基层干部60,镇有基层干部60,镇有基层干部80,每人都走访了若干贫困户,按照分层抽样,三镇共选40名基层干部,统计他们走访贫困户的数量,并将走访数量分成5,,绘制成如图所示的频率分布直方图.

(1)求这40人中有多少人来自,并估计三镇的基层干部平均每人走访多少贫困户;(同一组中的数据用该组区间的中点值作代表)

(2)如果把走访贫困户达到或超过25户视为工作出色,以频率估计概率,三镇的所有基层干部中随机选取3,记这3人中工作出色的人数为,的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率是,过点作斜率为的直线交椭圆两点,当直线垂直于轴时,

(1)求椭圆的方程

(2)当变化时,在轴上是否存在点,使得是以为底的等腰三角形?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案