【题目】已知△ABC的三个内角A,B,C对应的边长分别为a,b,c,向量m=(sinB,1﹣cosB)与向量n=(2,0)的夹角θ的余弦值为.
(1)求角B的大小;
(2)若b=,求a+c的取值范围.
【答案】(1); (2) .
【解析】
(1)由向量m=(sinB,1-cosB),向量n=(2,0)可求得cosθ=,即可求角B的大小;
(2)由余弦定理,得b2=a2+c2-2accosπ=a2+c2+ac,结合重要不等式可知b2=(a+c)2-ac≥(a+c)2-=(a+c)2,给出b=即可求得a+c的取值范围.
(1)∵m=(sinB,1-cosB),n=(2,0),∴m·n=2sinB,
|m|= .
∵0<B<π,∴0<<.∴sin>0.
∴|m|=2sin.
又∵|n|=2,
∴cosθ= .
∴,∴B=.
(2)由余弦定理,得b2=a2+c2-2accosπ=a2+c2+ac=(a+c)2-ac≥(a+c)2-=(a+c)2,当且仅当a=c时,取等号.∴(a+c)2≤4,即a+c≤2.
又a+c>b=,∴a+c∈(,2].
科目:高中数学 来源: 题型:
【题目】某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.
(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;
(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A1,但不包括B1的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数在某一个周期内的图象时,列出了如表并给出了部分数据:
0 | π | ||||
x | |||||
0 | 2 | 0 | 0 |
(1)请根据上表数据,写出函数的解析式;(直接写出结果即可)
(2)求函数的单调递增区间;
(3)设,已知函数在区间上的最大值是img src="http://thumb.zyjl.cn/questionBank/Upload/2020/11/26/20/139c9676/SYS202011262014544768390673_ST/SYS202011262014544768390673_ST.013.png" width="24" height="24" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,求t的值以及函数在区间[上的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的导数满足f(x)+x>对x∈R恒成立,且实数x,y满足xf(x)﹣yf(y)>f(y)﹣f(x),则下列关系式恒成立的是( )
A.B.ln(x2+1)>ln(y2+1)
C.D.x﹣y>sinx﹣siny
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2ax3(a>0),x∈R.若对任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)f(x2)=1,则a的取值范围是_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校在2013年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示,同时规定成绩在85分以上的学生为“优秀”,成绩小于85分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格.
(1)求出第4组的频率,并补全频率分布直方图;
(2)根据样本频率分布直方图估计样本的中位数与平均数;
(3)如果用分层抽样的方法从“优秀”和“良好”的学生中共选出5人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校艺术节对同一类的,,,四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“是或作品获得一等奖”;
乙说:“作品获得一等奖”;
丙说:“,两项作品未获得一等奖”;
丁说:“是作品获得一等奖”.
若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com