精英家教网 > 高中数学 > 题目详情
已知直线
x=2+t
y=1+t
(t为参数)与曲线C:ρ2-4ρcosθ+3=0交于A、B两点,则|AB|=(  )
A、1
B、
1
2
C、
2
2
D、
2
考点:简单曲线的极坐标方程,参数方程化成普通方程
专题:坐标系和参数方程
分析:首先,将直线的参数方程化为普通方程、圆的极坐标方程化为直角坐标方程,然后,结合弦长公式进行求解.
解答: 解:由直线
x=2+t
y=1+t
(t为参数),
得 x-y-1=0,
由ρ2-4ρcosθ+3=0,得
x2+y2-4x+3=0,化为标准方程为:
(x-2)2+y2=1,
它表示圆心为(2,0),半径为1的圆.
圆心到直线的距离为d=
|2-0-1|
2

=
2
2

∴弦长2
1-
1
2
=
2

故选:D.
点评:本题重点考查了直线的参数方程和普通方程互化、圆的极坐标方程和直角坐标方程的互化弦长公式等知识,属于中档题.解题关键是准确得到相应的方程的形式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

阅读下列程序,并指出当a=3,b=-5时的计算结果:a=
 
,b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg
kx-1
x-1
(k∈R).
(1)若y=f(x)是奇函数,求k的值,并求该函数的定义域;
(2)若函数y=f(x)在[10,+∞)上是单增函数,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设α∈{-1,1,
1
2
,2,3}
,则使函数y=xα为奇函数α值的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知k∈[-2,1],则k的值使得过A(1,1)可以作两条直线与圆 x2+y2+kx-2y-
5
4
k=0相切的概率等于(  )
A、
1
3
B、
1
2
C、
2
3
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=loga(x+b)(a>0且a≠1)的图象过点(2,1),其反函数的图象过点(2,8),则a+b等于.(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知x-3+1=a(a为常数),求a2-2ax-3+x-6的值.
(2)求值:log623+log62log618+21+
1
2
log25
log623+(log62)•(log618)+21+
1
2
log25

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各式
(1)(
27
8
 -
2
3
-(
49
9
0.5+(0.008) -
2
3
×
2
25
+(
3
4
0
(2)
lg5•lg8000+(lg2
3
)2
lg600-
1
2
lg36-
1
2
lg0.01

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=a-x和函数y=loga(-x)(a>0,且a≠0)的图象画在同一个坐标系中,得到的图象只可能是下面四个图象中的(  )
A、
B、
C、
D、

查看答案和解析>>

同步练习册答案