精英家教网 > 高中数学 > 题目详情

【题目】若将函数y=2sin(3x+φ)的图象向右平移 个单位后得到的图象关于点( )对称,则|φ|的最小值是(
A.
B.
C.
D.

【答案】A
【解析】解:将函数y=2sin(3x+φ)的图象向右平移 个单位后得到的函数解析式为y=2sin(3x﹣ +φ)

∵y=2sin(3x﹣ +φ)的图象关于点( )对称,

∴3× +φ=kπ,(k∈Z)

∴φ=kπ﹣

∴|φ|的最小值是

故选A

【考点精析】本题主要考查了函数y=Asin(ωx+φ)的图象变换的相关知识点,需要掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知动圆M恒过点(0,1),且与直线y=﹣1相切.
(1)求圆心M的轨迹方程;
(2)动直线l过点P(0,﹣2),且与点M的轨迹交于A、B两点,点C与点B关于y轴对称,求证:直线AC恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为奇函数 为偶函数

(1)求的解析式及定义域

(2)若关于的不等式恒成立求实数的取值范围

(3)如果函数若函数有两个零点求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是正方形, 平面 分别为的中点,且.

(1)求证:平面平面

(2)求证:平面平面

(3)求三棱锥与四棱锥的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数f(x)= 是奇函数.
(Ⅰ)求a,b的值;
(Ⅱ)已知f(x)在定义域上为减函数,若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0(k为常数)恒成立.求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等比数列,a1=2,且a1 , a3+1,a4成等差数列.
(1)求数列{an}的通项公式;
(2)若bn=log2an , 求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系 中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线 的极坐标方程是 ,圆 的极坐标方程是
(1)求 交点的极坐标;
(2)设 的圆心, 交点连线的中点,已知直线 的参数方程是 为参数),求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市出租车的收费标准是:3千米以内(含3千米),收起步价8元;3千米以上至8千米以内(含8千米),超出3千米的部分按元/千米收取;8千米以上,超出8千米的部分按2元/千米收取.

(1)计算某乘客搭乘出租车行驶7千米时应付的车费;

(2)试写出车费 (元)与里程 (千米)之间的函数解析式并画出图像;

(3)小陈周末外出,行程为10千米,他设计了两种方案:

方案1:分两段乘车,先乘一辆行驶5千米,下车换乘另一辆车再行5千米至目的地

方案2:只乘一辆车至目的地,试问:以上哪种方案更省钱,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 为定义在 上的偶函数,当 时,有 ,且当 时, ,给出下列命题:
的值为
②函数 在定义域上为周期是2的周期函数;
③直线 与函数 的图像有1个交点;
④函数 的值域为 .
其中正确的命题序号有 .

查看答案和解析>>

同步练习册答案