精英家教网 > 高中数学 > 题目详情
4.已知圆C:x2+y2+2x=15,M是圆C上的动点,N(1,0),MN的垂直平分线交CM于点P,求点P的轨迹方程.

分析 由题意可得NP+PC=MP+PC=4>NC,故点P的轨迹为以C、N为焦点,长轴长为4的椭圆.

解答 解:由题有NP+PC=MP+PC=4>NC,
故点P的轨迹为以C、N为焦点,长轴长为4的椭圆…(5分)
所以点P的轨迹方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$…(10分)

点评 本题考查了圆锥曲线的定义及方程的求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.①命题“若b2-4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题为真命题;
②命题“?x∈N,x3>x2”的否定是“?x0∈N,使x${\;}_{0}^{3}$>x${\;}_{0}^{2}$”;
③“b=0”是“函数f(x)=ax2+bx+c为偶函数”的充要条件;
④“正四棱锥的底面是正方形”的逆命题为真命题;
⑤a>1是(a-2)(a-1)>0的必要不充分条件.
其中正确命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.函数$f(x)=Asin(ωx+φ)\;(A>0,ω>0,|φ|<\frac{π}{2})$部分图象如图所示.
(Ⅰ)求f(x)的最小正周期及解析式;
(Ⅱ)求函数f(x)的单调递减区间;
(Ⅲ)设g(x)=f(x)-2cos2x,求函数g(x)在区间$[0,\frac{π}{2}]$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算题
(1)求值:${27^{\frac{2}{3}}}-{({\root{3}{-125}})^2}-{2^{{{log}_2}3}}×{log_2}\frac{1}{8}+{log_2}3×{log_3}4$
(2)求不等式的解集:①33-x<2;②${log_5}({x-1})<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系xOy中,已知点A(-2,0),点B是圆C:(x-2)2+y2=4上的点,点M为AB的中点,若直线$l:y=kx-\sqrt{5}k$上存在点P,使得∠OPM=30°,则实数k的取值范围为[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F(1,0),且经过点P($\frac{1}{2}$,$\frac{3\sqrt{5}}{4}$)
(1)求椭圆C的方程;
(2)若直线l与椭圆C相切,过F作FQ⊥l,垂足为Q,求证:|OQ|为定值(其中O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知抛物线过点(a,2),焦点到准线的距离为-2a,则抛物线的标准方程为x2=32y.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$\frac{π}{2}$<β<α<$\frac{3π}{4}$,cos(α-β)=$\frac{12}{13}$,sin(α+β)=-$\frac{3}{5}$,求sin2β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.己知△ABC的三个顶点的坐标分别为A(5,2),B(3,4),C(-1,4),判断三角形的形状.

查看答案和解析>>

同步练习册答案